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Preface

Nuclei and nuclear reactions are a playground (or a laboratory) of three of the four
(in special cases four) fundamental interactions in nature (the reactions have pre-
dominantly to do with the hadronic strong and the electromagnetic interactions).
Figure 1 shows the characteristic features of the relevant forces. Nuclei are com-
plex many-particle systems of nucleons (hadrons). These proved to be—mainly by
performing scattering experiments with leptons (electrons, muons, and neutrinos)—
extended objects with complex internal structure: Constituent quarks, gluons, whose
exchange binds the quarks together, sea-quarks (quark-antiquark pairs, into which
the gluons transform and vice versa) and—to the outside—virtual mesons, sur-
rounding an inner nuclear region (the bag). Figure 2 depicts schematically this in-
ternal structure of the nucleons and their interactions via exchange of virtual bosons
(especially mesons). The virtual mesons clouds surrounding the nucleons are—by
their mutual exchange of mesons— the cause of the nucleon-nucleon interaction.
This exchange is therefore responsible for the existence of nuclei, their rich struc-
ture, and the variety of their interactions. Especially the spin structure of the nu-
cleons, i.e. the way the spins and orbital angular momenta of the constituents act
together to form the nucleon spin has been of great concern (“Spin Crisis”) and
prompted many experimental investigations, often using spin-polarized particles. It
turned out, however, that the internal structure of the nucleons has comparatively
little influence on the behavior of the nucleons in nuclei, i.e. nuclear structure and
nuclear reactions. Thus, nuclear physics—and especially nuclear reactions—is a
field of science in its own right, even without much recourse to subnuclear degrees
of freedom.

Historical Remark

Elastic scattering of particles off each other is a special class of nuclear reactions, i.e.
one without change of the identity of the particles involved. In this sense the famous
Rutherford/Geiger/Marsden scattering experiment started the field of nuclear reac-
tions around 1911 in Manchester. Energetic particles from radioactive sources were

vii
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Fig. 1 Unified view of the fundamental forces of nature. All can be described as caused by the ex-
change of bosons between the constituent particles where massless exchange bosons lead to forces
of infinite range (the photon, the graviton, and—in principle—the gluon). However, the strong
interaction is special in two ways: the confinement of QCD causes the finite range of the “effec-
tive” quark-gluon interaction, and the interaction takes place also between the exchange bosons,
the gluons. The masses of the other exchange bosons determine the range of the interactions via
Heisenberg’s uncertainty relation: ≈1.4 fm for the nuclear force due to the meson masses of a few
hundred MeV, ≈10−18 m for the weak interaction due to the high masses of the W or Z bosons.
Although the cornerstone of the standard model and responsible for the particle masses, the Higgs
boson, has recently been found in agreement with the standard model the values of the masses of
all particles as well as the very different strengths of the forces are still unexplained leaving the
standard model an incomplete theory

used as projectiles (α’s from heavy elements such as “radium emanation” (222
86 Rn)

with sufficiently high energies and intensities). Figure 3 shows the original setup
used by Geiger and Marsden displaying already all features of a modern scattering
chamber, e.g. a thin-foil target, a detector registering single scattering events, the
rotation of the detector around the target for angular distributions, the collimation
of the projectiles for a good definition of the z axis etc. The scattering experiments
were tedious: A MBq (in 4π solid angle) source corresponds to an incident “beam”
current into a solid angle, small enough to define a reasonable scattering geome-
try, of only ≈10−6 nA. Single scintillation events had to be counted by observing
them on a ZnS screen in the dark. The first “true” nuclear reaction (i.e. one with
transmutation into different particles) was discovered by Rutherford in 1919 (after
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Fig. 2 Structure of the nucleons (left, here for a proton with u, u, and d quarks—for a neutron it
would be d, d, and u). The core (“bag”) is surrounded by virtual meson clouds of different ranges,
depending on their masses. The picture of the quark-gluon structure inside a nucleon depends on
the resolution with which we observe it; here we have rather a low-energy picture with three con-
stituent quarks interacting via gluons, no sea-quarks (quark-antiquark pairs), no heavier quarks,
and no gluon-gluon interactions. At much better resolution their importance grows, see Sect. 2.3.
The coupling of he quark spins to form the nucleon spin as shown is a crude simplification be-
cause the role of the spin JP = 1− of the gluons as well as of the orbital angular momenta is still
somewhat unclear and under investigation using spin-polarized probes. In any case, the quark-spin
contribution is much smaller than suggested by the simple picture, and the gluon-spin contribution
also appears too small to overcome what has been called “Nucleon-Spin Crisis”. On the right the
nuclear force is depicted as resulting from the exchange of virtual mesons or meson pairs. For
two protons, in addition, the electromagnetic force is mediated by the exchange of virtual photons.
Although the nuclear force is predominantly a two-body interaction (a saturation property), mult-
inucleon forces cannot be excluded that are defined as “simultaneous” interactions between more
than two nucleons not accounted for by a sum of two-nucleon forces (see Chap. 9). In principle,
also the exchange of Z0 and W± bosons mediating the weak interaction must also be considered,
e.g. in the parity-violating part of the interaction, which is, however, weaker by a factor of ≈10−7

earlier work together with Ernest Marsden), in which particles with larger range, 1H
nuclei, than that of the α’s in scattering from different targets were observed:

α + 14N→ 17O+ p (1)

using 6 MeV α’s from a radioactive source, observed with an apparatus quite simi-
lar to the above mentioned setup. Figure 4 shows such an event in a cloud chamber,
including also an event of “Rutherford” scattering of the recoil 17O nucleus on an
14N nucleus [BLA25,GEN40]. The cloud chamber, which is still unsurpassed as an
instrument for visualizing such events but also cosmic rays etc. was invented by
Charles Wilson following 1911, but developed for practical use by Blackett only
since 1921, was not yet used by Rutherford. Consequently the 1H nuclei were iden-
tified as part of all nuclei and Rutherford coined the term “proton”. However, the
still remaining basic puzzles about the true structure of nuclei were only resolved
after the neutron was discovered by James Chadwick in 1932 (after Rutherford had
already speculated about neutrons in nuclei and others had mistakenly interpreted
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Fig. 3 The original setup of
E. Rutherford, H.W. Geiger,
and E. Marsden for α

scattering from a gold foil
[RUT11,GEI13]

Fig. 4 Cloud chamber
photograph by Blackett of the
first nuclear reaction
α + 14N→ 17O+ p observed
by Rutherford in 1919
[RUT19,BLA25]

the neutron radiation from the reaction α + 9Be→ 12C+ n (with α’s from a polo-
nium source) to be an energetic γ radiation). It is evident that the use of radioac-
tive sources imposed severe restrictions: fixed or very limited energy range and
extremely low intensities. It is clear that the field of nuclear reactions could only
progress with the invention of particle accelerators. The first accelerator prototype
important for nuclear physics was the linear accelerator (“LINAC”) developed and
published in 1929 by Ralf Wideröe at the Aachen Institute of Technology, also lay-
ing the ground for the betatron, which was realized by Kerst and Serber in 1940, and
the cyclotron by Lawrence in 1931. Wideröe’s ideas also included the synchrotron
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and storage-ring schemes. The first nuclear reaction initiated with accelerated beams
was the reaction

p+ 7Li→ 2α (2)

by Cockroft and Walton in 1932 at the Cavendish Laboratory at Cambridge us-
ing a DC high voltage across several accelerating gaps and produced by the De-
lon/Greinacher voltage multiplication scheme. This and the ensuing developments
in nuclear and particle physics up to the present energies of up to 14 TeV (at the
Large Hadron collider LHC at CERN/Geneva) are intimately connected with the
achievements in accelerator physics and technology. Likewise the development of
detector technologies—from the first scintillators, later equipped with photomulti-
pliers, to the cloud and the bubble chambers, the ionization chamber, Geiger-Müller
counter, multiwire ionization chambers, and the large field of solid-state detectors—
was essential. Not unjustifiably accelerators have been called “tools of our culture”
or “Engines of Discovery” (so the title of an opulent book by Sessler and Wilson
[SES07]). Their impact reaches now into social applications such as tumor diagno-
sis and therapy, materials identification and modification, age and provenience anal-
yses in archaeology, geology, arts, environmental science etc., see Part III. Many
nuclear-physics textbooks deal also with applications, a comprehensive text is e.g.
Ref. [HER99].

The—possibly somewhat underestimated—importance of accelerators and their
developments for nuclear and particle physics will be stressed in this text by chapters
on their principles, about ion sources, ion optics and other important features, see
Chap. 16.

With the discovery of the neutron by Chadwick (1932) another branch of nuclear
physics and especially nuclear reactions opened up that only partly depends on ac-
celerators. Not only was the discovery of the neutron the keystone to the fundamen-
tal structure of nuclei removing all kinds of inconsistencies about e.g. about nuclear
isotopes, but immediately it incited Heisenberg to formulate the idea of charge inde-
pendence of the nuclear interaction and the fundamental symmetry of isospin. The
neutrality of the neutron facilitates the description of nuclear reactions. On the other
hand, production of neutrons for nuclear reactions as well as the detection methods
are more complicated (see Sect. 17.4). Normally, except when neutrons from nu-
clear reactions are used, the choice or selection of specific neutron energies requires
additional methods such as moderation by elastic collisions with light nuclei and/or
chopper and time-of-flight facilities. Much of neutron work relies on neutrons from
fission in reactors (an example is the high-flux 660 MW research reactor with a
thermal flux of >1 · 15 s−1 cm−2, at the Institute Laue-Langevin (ILL Grenoble))
or on spallation neutron sources where intense proton beams in the GeV and mA
range incident on (liquid) metal targets release many (up to 30) neutrons per proton
with high energies (a typical research center is the LANSCE facility with a proton
LINAC, originally designed as meson factory at Los Alamos, New Mexico, another
the spallation neutron source (SNS) at Oak Ridge, Tennessee, with 1.4 MW beam
power and 4.8 · 16 neutrons/s.) The neutron has also fundamental properties in its
own right that have been studied:
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• β decay.
• The internal (quark + gluon) structure and charge and magnetic-moment distri-

butions. They have been studied e.g. by elastic and inelastic electron scattering
where deuterons and especially 3He served as neutron targets. Polarized 3He is
an almost pure polarized neutron target. The charge and magnetic-moment distri-
butions inside the neutron are proof of its inner structure.

• The possible electric dipole moment and thus time-reversal and parity violations
were studied where the absence of the Coulomb force is experimentally advanta-
geous.

• The wave nature of neutrons of low energies was studied in reflection, diffraction,
and interference experiments.

• Especially ultracold neutrons offer many interesting properties and applications,
e.g. its interaction with the gravitational field or that of its magnetic moment with
magnetic fields.

Observables

In this text the term observable is used repeatedly. In quantum mechanics the most
widely used definition is

Definition of “Observable” An observable is an operator in Hilbert space corre-
sponding to a physically measurable quantity that must be hermitean in order to
have real eigenvalues (the measurable quantities).

This definition lacks uniqueness in the sense that only a small fraction of all
hermitean operators corresponds to measurable quantities. Without going into the
details of the still ongoing discussion of different interpretations of quantum me-
chanics (e.g. the “Copenhagen” interpretation, which includes the interaction be-
tween a macroscopic measuring apparatus with the microscopic quantum world, or
the question of decoherence etc.) the term observable will be used more loosely in
the sense of measurable quantity. Thus, anything that can be measured is an observ-
able in this sense, and a state vector Ψ is not an observable. A special role is played
by the measurable quantity time to which no operator can be assigned. On the other
hand energy (cf. Hamilton operator), coordinates of space and momentum, compo-
nents of angular momentum, also spin, and spin operators are observables, also in
the strict sense of the above definition.

About This Book

This book contains the essential material that was presented in nuclear-physics
courses for graduate students at the University of Cologne. Therefore, the references
in this book, but especially the list of general references in the front part of the book
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contain also selected textbooks in German that may not be accessible easily to an
international readership.

The author, an experimental nuclear physicist, considers the intertwining of ex-
perimental facts, experimental methods, and tools, with basic theoretical knowledge
a good method to teach the subject.

The problems attached to each chapter serve rather to elucidate and detail physi-
cal ideas that could not be presented in full detail in this text, than to give an ample
collection for classroom use which would exceed the space available. Many good
(older) books contain such collections.

Subjects such as (relativistic or non-relativistic) kinematics will therefore not
be treated extensively. However, a basic knowledge of both is a prerequisite for
understanding nuclear reactions and the connections to particle and high-energy
physics.
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Nuclear Reactions



Chapter 1
Introduction: Role of Nuclear Reactions
in Nuclear and Particle Physics

1.1 Nuclear Reactions in Nuclear Spectroscopy

We define nuclear spectroscopy as the science of learning all about the properties of
the thousands of nuclides, each with individual and also collective properties. Aside
from early studies of radioactive decays, nuclear reactions have been the tool to in-
vestigate the action of nuclear forces (in the sense of an interplay of the strong inter-
action proper, the electromagnetic, and the weak force). In high-density situations,
e.g. in neutron stars, even the gravitational force enters the stage via the density
dependence of the nuclear interactions. The aim of modern nuclear spectroscopy
is now moving away from stable nuclei, from deformed highly excited nuclei with
high angular momenta on to the investigation of nuclei in the regions near the lim-
its of existing nuclei with either high neutron excess, high neutron deficiency, or
the region of new elements, the superheavy nuclei. They can be characterized by
their isospin T = (N − Z)/A (for details see Chap. 12. Z is the charge number
of the nucleus considered, determining its position in the periodic table and thus
its chemical properties, N the neutron number of the specific isotope, and A its
mass number). Thus a three-dimensional plot with the coordinates excitation en-
ergy, angular momentum, and isospin charts the nuclear landscape to be explored.
The latest developments encompass therefore nuclear reactions with exotic beams
with radioactive (or: rare) ion-beam facilities (RIB) exploring the drip-line limits of
the nuclear chart, the astrophysical chains of reactions such as the r-process, and
the changes of nuclear models such as the shell model with varying isospin. Fig-
ure 1.1 illustrates this nuclear parameter space. In the following chapters details of
the different nuclear reaction models and tools will be discussed.

1.2 Extension of Nuclei

Since the epoch-making scattering experiments of Geiger, Marsden, and Rutherford
around 1912 and their interpretation the basic structure of the atom is known. It

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
DOI 10.1007/978-3-642-53986-2_1, © Springer-Verlag Berlin Heidelberg 2014

3

http://dx.doi.org/10.1007/978-3-642-53986-2_1


4 1 Introduction: Role of Nuclear Reactions in Nuclear and Particle Physics

Fig. 1.1 Nuclear parameter space with phenomena classified according to excitation energy, an-
gular momentum, and isospin

consists of a compact (i.e. small and massive) nucleus, which carries the charge Ze

(Z = nuclear charge number = element number of the periodic table) and nearly
the entire mass of the atom. This evidence formed the basis of Bohr’s (and later
Sommerfeld’s) atomic-structure models of electrons circulating around the nucleus
like planets around the sun (with some unsatisfactory ad-hoc assumptions that be-
came obsolete only around 1924 by the new quantum mechanics). The explanation
of the existence of isotopes and the correct placement of them in the chart of nu-
clides (Z vs. N ) required the discovery of the neutron in 1932.

Already Rutherford could—by comparing the measured scattering angular dis-
tribution of α particles on gold with his Ansatz of a point-Coulomb interaction—
conclude that the nucleus is an object smaller than the scattering distances (order of
magnitude: 1 fm = 1 · 10−15 m). The very fact that scattering at backward angles
occured, showed that the scattering center had to be heavier than the α (this is pure
kinematics). The electron cloud relative to this is very large (order-of-magnitude
radius: 1 Å = 1 · 10−10 m) and carries the charge −Ze such that the atom is ex-
actly neutral. After the invention of accelerators the use of α particles of much
higher energies with penetration into the target nucleus was possible and the ex-
tension (the radius) of nuclei could be obtained by the onset of deviations from
the point-Coulomb scattering. A key role is played here by the charge form factor
and its Fourier transform, the charge-density distribution. It expresses how strongly
the Coulomb potential of an extended (often simply assumed to be homogeneous)
charge distribution in the nuclear interior deviates from that of a point charge or
what the influence of the (hadronic) nuclear interaction on the observables is, see
Fig. 2.6.

Using charged leptons as probes, which have no measurable extension and do
not feel the strong interaction, charge (and current) distributions in nuclei and nu-
cleons have been determined. At higher momentum transfer (i.e. at high energies
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and large scattering angles via inelastic or quasi-elastic scattering) excited states
of the nucleon and later-on, (via deep-inelastic scattering), substructures of the nu-
cleons (partons) were discovered that had all the properties of quarks: 1/3 charges,
spin 1/2�, color charge and confinement, characteristics of truly elementary parti-
cles (point shape, no internal structure), and they proved to be sources of the strong,
electromagnetic, and weak interactions, also by probing them with neutrinos.

1.3 Typical Energies

The order-of-magnitude of the energies relevant in nuclear reactions will be shown
in three examples:

1.3.1 Binding Energies of Nuclei

To construct a spherical nucleus with an assumed homogeneous charge distribu-
tion and a charge radius R from all its nucleons (protons) all protons (total charge
Qtot = Ze with Z the charge number) must be brought together from infinity
against their mutual rejection and, therefore, at the expense of the electrostatic
binding energy. The increase of Coulomb energy between a charge element dQ

and a partially filled sphere with radius r < R and charge Qr =Qtot(r
3/R3), and

dQr =Qtot(3r2/R3)dr is

dECoul =
∫ r

∞
QrdQr

x2
dx = 3 · Q

2
tot

R6
r4dr. (1.1)

From this by integration the required total energy is obtained:

ECoul =
∫ R

∞
dECoul = 3

5

(Ze)2

R
, (1.2)

which is numerically

ECoul = 0.72
Z2

A1/3
(1.3)

(with R = R0A
1/3, R0 ≈ 1.2 fm the radius constant, see Chap. 2, A the mass num-

ber of the nucleus). For a heavy nucleus such as Pb this amounts to ≈819 MeV
(about 4 MeV/nucleon). The binding energies of the nuclei must therefore be larger
than these values. A nuclear reaction in which the projectile should probe the inte-
rior of the target nuclei must therefore proceed at appropriately high energies. This
explains the necessity of developing and using accelerators because the energies of
the “beams” from radioactive sources are very limited to a few MeV. Figure 1.2
shows the development of the accelerator energies since 1930, and it is interesting
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Fig. 1.2 Time development of the accelerator energies. The straight line corresponds to an energy
doubling time of about seven years. This type of plot was first created by M.S. Livingston [LIV54]
who co-invented the first cyclotron with E.O. Lawrence and also was instrumental in the invention
of “strong focusing”, see Sects. 16.2.2 and 16.3.3

to see the onset of new technologies every time when an older line of development
became “saturated” (Livingston plot). Parallel to the progress in accelerators were
the developments in detection methods, detector technologies, electronics and com-
puting. The principles of the main tools of nuclear reactions are discussed in Part II.
Applications in many other fields are continuing to gain importance, especially in
medicine, art, archaeology, materials analysis and modification, technology etc., see
Part III.

1.3.2 Coulomb Barrier

The height of the Coulomb barrier

VC = Z1Z2e
2

R
≈ 1.44

Z1Z2

R(fm)
(MeV)= 1.44

Z1Z2

R0(A
1/3
1 +A

1/3
2 )(fm)

(MeV) (1.4)

is decisive for a charged particle with charge number Z1 to be able to penetrate into
a nucleus with charge number Z2 and to initiate a reaction or not (this energy is the
one calculated in the “c.m. system”, i.e. that of the relative motion). For illustration
see Figs. 2.4 and 13.1.
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Fig. 1.3 The reduced de
Broglie wavelength λ̄ of
different particles as functions
of their kinetic energy T

1.3.3 “Optical” Argument

The de-Broglie wavelength of a particle beam is determined by its momentum:

λ̄de Broglie = �

p
= �c√

T 2 + 2(m0c2)T
= 197(MeV)√

T 2 + 2(m0c2)T
(fm). (1.5)

T is the kinetic energy of the particles and is often used in a relativistic context when
kinetic and total energy, i.e. including the rest energy have to be distinguished. At
low energies, i.e. in low-energy nuclear physics and in this book E is used for the
kinetic energy.

Analogous to light optics the resolution of an device or experiment is limited
by diffraction such that only objects can be observed separately, which have at
least a distance from each other of about one wavelength. Details of the spatial nu-
clear structure can only be resolved with electrons with energies�197 MeV (there
λ̄de Broglie = 1 fm) or with protons with energies �1 MeV. The argument is some-
what imprecise: more precisely the wavelength of the radiation exchanged in the
interaction should be taken as measure, i.e. of the virtual photons in the electron-
nucleus scattering, or that of the exchanged mesons for the nuclear interaction, and
that of the gluons in the strong interaction. The transferred momentum � �K , which
has to be used here depends on the projectile momentum and also on the scattering
angle. For elastic scattering (|�kin| = �|�kout|) with the law of cosines one obtains

�| �K| = �|�kin − �kout| = 2�|�kin| sin(θ/2). (1.6)

Figure 1.3 shows the reduced de Broglie wavelength of electrons, pions, protons,
and α particles as functions of the kinetic energy T . In the range of highly relativistic
energies λ̄ does not depend on the particle mass and decreases with T −1 (instead of
non-relativistically with T −1/2).
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1.4 Nuclear Reaction Models

Lacking a complete and fundamental theory of the nuclear interaction (the applica-
tion of the quantum chromodynamics (QCD) as a fundamental theory of the strong
interaction meets unsurmountable difficulties in the non-perturbative regime) in nu-
clear physics, i.e. also for the description of nuclear reactions, there is no complete
Hamiltonian. Very promising steps have recently been successful in describing nu-
clear structures of light nuclei and reactions between them in the framework of EFT
(“effective-field” theories, i.e. low-energy approximations of the QCD, also χPT,
“chiral-perturbation” theory) and even lattice-gauge calculations. But, in general,
one has to rely on models of nuclei and the nuclear interactions with their naturally
limited range of validity. The different nuclear reaction models can be classified in
different ways, but a classification according to times scales of interactions is es-
pecially intuitive with the limiting cases of direct (fast) reactions on the one hand,
(slow) compound nuclear reactions on the other. Typical models for fast reactions
are e.g.:

• The optical model of elastic scattering (OM).
• DWBA (“Distorted Waves Born Approximation”), CCBA (“Coupled Channels

Born Approximation”) for direct inelastic scattering or rearrangement reactions
such as stripping or pickup reactions.

Slow processes via intermediate states e.g. isolated resonances are described with
the

• R-matrix and Breit-Wigner theories for compound-nucleus (CN) resonances

Between both limits there are e.g.

• Hauser-Feshbach and statistical theories for reactions via strongly overlapping
compound-nucleus (CN) states.

• Chaos theories describing distribution functions of resonances and Ericson fluc-
tuations.

• Descriptions of “intermediate” structures by “doorway” states (examples are:
isobaric-analog resonances (IAR), neutron single-particle resonances, giant reso-
nances, and fission doorways).

• Incomplete fusion and pre-compound nuclear reactions.

In following chapters of this book the most important of these models are discussed
and references for further and in-depth reading are given there.

1.4.1 Hierarchy of Excitations

The classification of structures in excitation functions reveals that there seems to
exist a certain hierarchy, i.e. the widths of the observed structures (equivalent to the
lifetimes of the corresponding states via Heisenberg’s uncertainty relation Γ = �/τ )
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Fig. 1.4 Hierarchy of
excitations. The figure
illustrates the spreading of
simple structures into more
complicated ones

are sufficiently different to assign them to at least three groups: Fine structure, in-
termediate, and gross structure. Very schematically the fine-structures can be asso-
ciated with compound-nucleus states, which are complicated n-particle-n-hole con-
figurations (in the language of the shell model). The gross structures are simple ex-
citations, e.g. 1-particle-1 hole states, and intermediate structures can be associated
with few-particle-few-hole states, e.g. 2-particle-2-hole configurations, often called
doorways. It is characteristic that the gross and intermediate structures may decay
directly (“escape”) as well as via narrower (longer-living) structures (“spreading”).
Thus, their widths are the sum of the two (sometimes three) widths.

Γtot = Γ ↑(escape)+ Γ ↓(spreading). (1.7)

The shape of the fine structure state distribution, i.e. its strength and energy distri-
bution normally in first order is Lorentzian. Figure 1.4 illustrates this schematically.
Several examples of at least three distinct levels of structures have been identified in
nuclear physics. The finest structures are associated with true compound states and,
in the limit, participation of many or all nucleons. The extreme gross structures are
connected to single (quasi)-particle excitations, whereas the intermediate structures
stem from few particle-few-hole excitations such as th giant resonances.

Experimentally, with sufficient energy resolution, the fine structures have been
resolved (examples are the isobaric-analog resonances or the giant resonances). The
location of the intermediate or gross structure is then given by the centroid of the
fine-structure and its width from that of a Gaussian-shaped envelope. In the case
of insufficient experimental resolution or, after deliberate averaging over fine struc-
tures, intermediate or gross structures are the only remaining visible structures.

In the reference list of this chapter—besides a few specific references—a number
of general textbooks of general interest, covering the subject of nuclear reactions,



10 1 Introduction: Role of Nuclear Reactions in Nuclear and Particle Physics

is given without citations in the text (clearly the selection is a matter of taste of the
author and not meant to be an evaluation). In the later chapters the references are
more specific for the content of the respective chapter.

1.5 Exercises

1.1. Make yourself acquainted with the relativistic relations between total energy E,
kinetic energy T , velocity v or β = v/c, 3-momentum 3 �p, and rest mass of par-
ticles. Show the conditions for approximate non-relativistic relations as used in
low-energy nuclear physics. What does the value of

γ = 1√
1− β2

= 1+ T

m0c2
(1.8)

tell us?
1.2. Using non-relativistic kinematics, show how in elastic scattering the mass ra-

tio m1/m2 (with m1 the mass of a projectile, m2 that of the target nuclei at
rest) enters the range of allowed scattering angles in the lab. and c.m. systems.
(For the case of equal masses think of the billiard balls.) Discuss the case of a
heavier nucleus scattered elastically from a lighter one, apply this to deuterium-
hydrogen scattering 1H(d,p)2H and give the relations of lab. vs. c.m. scattering
angles, as well as energies of the outgoing deuterons and protons vs. lab. an-
gles.

1.3. The semi-classical theory of energy loss of heavy charged particles (mass M)
in matter assumes that the main effect of energy degradation is caused by many
collisions with momentum transfer to atomic electrons (mass m) at statistically
varying impact parameters. This is the basis of the Bethe-Bloch theory of stop-
ping power, see Sect. 17.3.1. How does the extreme mass ratio M/m determine
the appearance of a trace in a Wilson cloud chamber, cf. Fig. 4?

1.4. Verify the main part of the Bethe-Boch formula semi-classically by calculating
the energy transferred on an atomic electron for a given impact parameter b,
see Eq. (17.1) and Sect. 2.2.2.

Hints: Calculate first the momentum p⊥(b) transferred to one electron at
collision parameter b, assume a statistical (uniform) distribution of b for many
electrons of charge density NZe, then integrate over b from a minimum bmin
determined from the ionization energy I to a maximum bmax (minimal mo-
mentum transfer) from the classical kinematical limit. Employ the Sudden Ap-
proximation in which only the momenta perpendicular to the particle’s path
contribute, the longitudinal components cancel in the integral.

1.5. Summarize, along which lines of thought Rutherford’s conclusions about the
nuclear atom, with a compact and heavy nucleus as source of a point Coulomb
field, can be understood? Is there a “proof” (in the mathematical sense) of
Rutherford’s model (think of Popper’s “falsification only!” [POP34])—or why
do we think this model is right? Apply this reasoning to the scientific method
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in general: For how long is a model considered “good”. (Example: N. Bohr’s
model of the atom; why have his “ad hoc” assumptions not been satisfactory?)

1.6. For the dynamics of nuclear reactions the “energy, available in the c.m. system
(Ẽ)” is one decisive parameter (the other is the scattering angle or, equiva-
lently, the momentum transfer, see also the section on direct reactions (10.5)).
Compare this quantity (simplification: m1 =m2 =m) as function of the lab. en-
ergy (energies) for the two cases: (a) Fixed target, (b) Colliding beams. Which
lab. energy of a proton beam on a fixed target would be necessary to obtain the
same “available” energy of 14 TeV as in the LHC?

1.7. The W and Z bosons are responsible for transmitting the weak interaction.
What is its approximate range? Which features of the neutron decay n→ p+
e− + ν̄ follow from this range?

1.8. Until 1932, when the neutron was discovered, some nuclear-structure models
assumed electrons in the nuclei to compensate for the positive proton charge.
Why is this conjecture wrong?
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Chapter 2
Classical Cross Section

2.1 Deflection Function

The question whether physical phenomena can be described “classically” or need a
microscopic treatment, i.e. need quantum mechanics for their description is funda-
mental and still under intensive discussion. Ever larger objects (e.g. heavy ions,
see below in Sect. 3.4, large molecules like the fullerenes) have been shown to
have quantum properties. They exhibit e.g. interference. This touches upon basic
concepts such as Schrödinger’s Cat or decoherence of quantum states by the en-
vironment. For our purpose it may suffice to assume a fundamentally quantum-
mechanical description that in special cases, i.e. when the relevant de Broglie wave-
lengths are small, may be approximated by classical methods.

Cross sections are the central observable of nuclear and particle physics. In some
areas of nuclear physics (e.g. heavy-ion physics) nuclear reactions (scattering) are
often treated semi-classically. Likewise, the historically important Rutherford scat-
tering can be treated classically. The classical description implies that particles and
their trajectories are localized. However, in each case it must be checked whether a
classical description is valid. A criterion for classicity is (like in geometrical light
optics) the wavelength of the radiation used is small as compared with some char-
acteristic object dimension d . In agreement with Heisenberg’s uncertainty relation
this means

λ̄deBroglie = �/p
 d. (2.1)

When choosing for a typical object dimension half the distance of the trajectory
turning point d0 for a central collision the Sommerfeld criterion for classical scat-
tering is obtained (with α = e2/�c Sommerfeld’s fine-structure constant and β a
short notation for v/c)

ηS = Z1Z2e
2

�v
= Z1Z2

e2

�c
· c
v
= Z1Z2 · α

β
� 1 (2.2)
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or numerically (for a very heavy target, thus at rest in the c.m. system)

ηS ≈ 0.16 ·Z1Z2

√
Aproj

Elab(MeV)
� 1 (2.3)

with Aproj and Elab the projectile mass number and its kinetic energy in the lab. sys-
tem, respectively.

There exist more refined criteria, which take into account that the wave nature of
the radiation leads to diffraction phenomena, especially where the scattering poten-
tial changes strongly, e.g. at the nuclear surface. Therefore, a requirement is postu-
lated that the de Broglie wavelength not change substantially by the potential gra-
dient. For Coulomb scattering this provides a scattering-angle dependent criterion
[NOE76]

η2
S � η2

crit =
[

sin2 θ
2

cos θ
2 (1− sin θ

2 )

]2

. (2.4)

Thus, a classical description is always possible at θ = 0◦ but never at θ = 180◦.
In the case of scattering of identical particles exchange symmetry and its ensuing

interference effects entirely forbid any classical description (see below).
Here we present a complete definition of the (classical) cross section, which can

be easily translated into a quantum-mechanical definition.

Definition of “Cross Section” The (differential) cross section is the number of
particles of a given type from a reaction, which, per target atom and unit time, are
scattered into the solid-angle element dΩ (formed by the angular interval θ . . . θ +
dθ and φ . . . φ + dφ), divided by the incident particle flux j (a current density =
number of particles passing a unit area per unit time).

In the following we assume azimuthal (i.e. φ) independence of the scattering (e.g.
valid for particles without spins or particles with spins, but with spin-independent in-
teractions). The classical scattering situation is characterized by a definite trajectory
and a unique relation between each particle incident from r →−∞ at a definite
perpendicular distance b (the impact parameter) from the z axis and its (asymp-
totic) scattering angle at r →+∞ after the interaction. This definition yields the
classical formula for the cross section. With the number of particles per unit time
jdσ = j · 2πbdb one obtains

(
dσ

dΩ

)
class
= 2πbdb

2π sin θdθ
= b

sin θ
·
∣∣∣∣db

dθ

∣∣∣∣. (2.5)

b = b(θ,E) contains the influence of the interaction (the dynamics). θ(b) for ob-
vious reasons is called deflection function. Its knowledge determines the scattering
completely.
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Fig. 2.1 Classical
Rutherford scattering. b is the
impact parameter, (r,φ) are
the polar coordinates of the
projectile, θ the polar
scattering angle, d is the
distance of closest approach,
and d0 its minimum for a
central collision

2.2 Rutherford Scattering

2.2.1 Rutherford Scattering Cross Section

The situation for the case of Rutherford scattering (for a repulsive Coulomb force
between equal charges) is shown in Fig. 2.1. For the derivation of the Rutherford
scattering cross section we assume:

• The projectile and the scattering center (target) are point particles (with Gauss’s
law it can be proved that this is also fulfilled for extended particles as long as the
charge distribution is not touched upon).

• The target nucleus is infinitely heavy (i.e. the laboratory system coincides with
the c.m. system).1

• The interaction is the purely electrostatic Coulomb force (more precisely: the
monopole term of this force)2

FC =± 1

4πε0
· Z1Z2e

2

r2
= C

r2
(2.6)

with the Coulomb potential VC =±C/r .

The deflection function is most simply determined by applying angular-momen-
tum conservation and the equation of motion in one coordinate (y) (v∞, E∞, and

1In all scattering/reaction problems the projectile mass m = ma is correct for an infinitely heavy
target or in the lab. system of coordinates with the target (mass mA) at rest. In the c.m. system used
for theoretical considerations m has to be understood as the reduced mass μ=mamA/(ma +mA).
2The term 1/4πε0 is correct in SI units. Throughout the remainder of this book—as usual in the
nuclear physics literature—it is set equal to 1 (Gaussian system of units).
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p∞ are the asymptotic (i.e. valid or prepared at r →±∞) quantities: projectile
velocity, kinetic energy, and momentum).

L=mv∞b=mr2φ̇ =mvmind (2.7)

and from this

dt = r2dφ/v∞b (2.8)

m�vy =
∫

Fydt

v∞ sin θ = C

mv∞b

∫ ∞
−∞

φ̇ sinφdt

= C

mv∞b

∫ π−θ

0
sinφdφ = C

mv∞b
(1+ cos θ). (2.9)

After transformation to half the scattering angle the deflection function is

cot(θ/2)=mv2∞b/C = v∞L/C (2.10)

and

b= C

2E∞
· cot

(
θ

2

)
(2.11)

and
db

dθ
= C

2mv2∞
· 1

sin2(θ/2)
= C

4E∞
· 1

sin2(θ/2)
(2.12)

and thus for the Rutherford cross section

dσ

dΩ
=
(

Z1Z2e
2

4E∞

)2

· 1

sin4(θ/2)
. (2.13)

Numerically:

dσ

dΩ
= 1.296

(
Z1Z2

E∞(MeV)

)2

· 1

sin4(θ/2)

[
mb

sr

]
. (2.14)

Figure 2.2 shows the strong angle dependence of this cross section together with the
original data of Ref. [GEI13], adjusted to the theoretical curve shown.

2.2.2 Minimal Scattering Distance d

For this quantity one needs additionally the energy-conservation law:

mv2∞
2
= mv2

min

2
+ C

d
. (2.15)
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Fig. 2.2 The curve shows the
angular dependence of the
theoretical Rutherford cross
section ∝sin−4(θ/2). The
points are the original data
(that consisted of tabulated
numbers of counts with no
error bars, and not
transformed into
cross-section values) of
Ref. [GEI13], adjusted to the
theoretical curve, giving a
nearly perfect fit (Nowadays
data with at least an error
estimate or, better, error bars
are mandatory)

The absolutely smallest distance d0 is obtained in central collisions with:

E∞ = mv2∞
2
= C

d0
. (2.16)

From this and the angular-momentum conservation Eq. (2.7) the relation

b2 = d(d − d0) (2.17)

is obtained with the solution:

d = C

2E∞

(
1+

√
1+ b2 4E2∞

C2

)

= d0

2

(
1+ 1

sin θ/2

)
. (2.18)

The classical scattering distance in relation to the minimum distance d0 as function
of the scattering angle is shown in Fig. 2.3.

2.2.3 Trajectories in the Point-Charge Coulomb Field

For the motion in a central-force field with a force ∝r−2 classical mechanics shows
that the trajectories are conic sections (for scattering, i.e. positive total energy, these
are hyperbolae). To derive this one needs again the conservation laws of angular
momentum and energy (with the Coulomb potential):

L = mr2φ̇ = const (2.19)
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Fig. 2.3 Minimal scattering
distance d (in units of d0) as
function of the c.m. scattering
angle

E = mr2

2
+ L2

2mr2
+ C

r
. (2.20)

In these equations dt can be eliminated. The integration of

dφ =− L

mr2

[
2

m

(
E − C

r
− L2

2mr2

)]−1/2

dr (2.21)

results in

r = L2

mC
· 1

1− ε cosφ
(2.22)

with b = L/
√

2mE. With k = L2/mC and ε =
√

1+ 4E2b2

C2 (the eccentricity) the
standard form of conic sections is obtained

1

r
= 1

k
(1− ε cosφ). (2.23)

2.2.4 Consequences

There is now a connection between impact parameter b, scattering angle θ , and
(quantized) orbital angular momentum L= ��

b= 1

2
d0 cot

θ

2
= ��

p∞
. (2.24)

Because of the quantization of L the orbital angular-momentum quantum numbers
l = 0,1,2, . . . correspond to annular zones around the z direction. Larger scattering
angles belong to smaller impact parameters and smaller orbital angular momenta.
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2.2.5 Consequences of the Rutherford Experiments and Their
Historic Significance

Rutherford and his collaborators Geiger and Marsden (later also Chadwick) used α

particles from radiactive sources as projectiles. Their energies were so small that for
all scattering angles the minimum scattering distances d were large compared with
the sum of the two nuclear radii of projectiles and targets. The complete agreement
between the results of the measurements and the (point-)Rutherford scattering cross
section formula shows this in accordance with Gauss’s law of electrostatics, which
can be used to prove that a finite charge distribution in the external space beyond
the charges cannot be distinguished from a point charge with an r−1 potential. In
addition, the mere occurrence of backward-angle scattering events proves uniquely
by simple kinematics that the target nuclei were heavier than the projectiles. Thus
the existence of the atomic nucleus as a compact (i.e. very small and heavy object)
was established (and Thomson’s idea of a “plum-pudding” of negative charges from
distributed electrons, in which the positive charges of ions were suspended, was
refuted).

The dependence of the Rutherford cross section on the atomic charge number Z

has been used to check on the correct assignment of Z to chemical elements and
their positioning in the periodic table—complementing the use of the characteristic
X-ray spectra together with Moseley’s law.

2.2.6 Quantum-Mechanical Derivation of Rutherford’s Formula

The Rutherford cross section may be derived quantum-mechanically by solving the
Schrödinger equation with the point (or extended) Coulomb potential as input and
with suitable boundary conditions. This equation has the form of a hypergeometric
differential equation.

− �
2

2μ
u′′ +

(
C

r
+ �

2

2μ

�(�+ 1)

r2
− �

2k2

2μ

)
u= 0. (2.25)

After decomposition into partial waves (with � designating the angular momentum
of each), this equation may be written in its “normal” form with the Sommerfeld
parameter ηS , as defined in Eq. (2.2), and ρ = kr with k the c.m. wave number of
the projectile:

d2u�(ρ)

dρ2
+
(

1− �(�+ 1)

ρ2
− 2

ηS

ρ

)
u�(ρ)= 0, (2.26)

where u�(ρ) is the radial wave function solving the equation. Asymptotically the
solutions are the regular and irregular Coulomb Functions with the Coulomb phases
σ� = argΓ (�+ 1+ iηS):

F� −→ sin(kr − �π/2− ηS ln 2kr + σ�), (2.27)
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G� −→ cos(kr − �π/2− ηS ln 2kr + σ�). (2.28)

With the usual partial-wave expansion with incident plane waves the Coulomb
scattering amplitude of the outgoing wave results:

ΨS −→ 1

r
ei(kr−ηS ln 2kr)fc(θ), (2.29)

fc(θ)=−ηS

e2iσ0 · eiηS ln sin2 θ/2

2k2 sin2 θ/2
. (2.30)

The amplitude squared fC ·f ∗C provides the Rutherford cross section, which is iden-
tical to the classically derived equation. However, for all applications where there
is interference the Rutherford amplitude has to be used including its (logarithmic)
phase, responsible for the long range, and the s-wave Coulomb phase σ0. Typical
cases are that of identical particles (see Sect. 3.4) or of interference with nuclear
(hadronic) amplitudes (see e.g. Sect. 7.2). In these cases the partial-wave expansion
cannot be truncated at low partial waves.

2.2.7 Deviations from the Rutherford Formula

According to the previous discussion deviations from the point Rutherford cross
section are expected in the following cases:

• Modifications of the point Coulomb potential by the screening effects of the
atomic electrons, which must be described by a screened Coulomb potential.
These effects should show up especially at forward angles. Details will be dis-
cussed below when the Rutherford cross section is derived using the Born ap-
proximation (Sect. 10.7).

• Extended charge distribution and sufficiently high incident energy such that the
projectile “dives” into the nuclear volume. Leptonic projectiles can probe the
charge distribution without interfering strong-interaction effects and with no vol-
ume of their own. For hadronic charged projectiles one expects strong effects
from the nuclear interaction whereas neutrons see the matter-density distribution
only. With many such scattering experiments, besides the different density distri-
butions, charge and matter radii of the nuclei and nucleons and their systematics
with the nuclear mass number A were determined (see below). This principle was
also applied in the deep-inelastic scattering of very high-energy leptons (elec-
trons, muons, and neutrinos) from nucleons, which led to the evidence of sub-
structures (partons, which finally turned out to be the quarks) inside the nucleons
and to the determination of all their properties such as spin, masses, charges etc.
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2.3 Scattering, Density Distributions, and Nuclear Radii

2.3.1 Nuclear Radii from Deviations from Rutherford Scattering

Already without detailed knowledge of the density distribution and of the potential
some quite precise statements about nuclear radii by scattering of charged projectiles
from nuclei were possible. One condition for this is, however, that the potential,
which is responsible for the deviations from the point cross section is of short range,
i.e. the charge distribution has a relatively sharp edge.

Most impressively these deviations from the point cross section appear with di-
minishing distances between projectile and target in a suitable plot. Because the
Rutherford cross section itself is strongly energy and angle dependent one may
choose to plot the ratio

(
dσ

dΩ

)
exp

/(
dσ

dΩ

)
point, theor.

(2.31)

as function of the minimum scattering distance d. Thus data at very different ener-
gies and angles can be directly compared (see Fig. 2.7 in Sect. 2.3.5). If, in addition,
one wants to check on the assumption of the systematics of nuclear radii to follow
r = r0A

1/3 a universal plot for all possible scattering partners by plotting the above
ratio against d/(A

1/3
1 + A

1/3
2 ) is useful. The experimental results show the exten-

sion of the charge distribution and the rather sudden onset of (hadronic) absorption
(provided the interaction has a strong absorption term, which is typical for A≥ 4).

2.3.2 Coulomb Scattering from an Extended Charge Distribution

Here the quantum-mechanical derivation of the Rutherford-scattering cross section
for a homogeneous charge distribution is useful. Starting points are

• Fermi’s Golden Rule of perturbation theory.
• The first Born approximation.

For a “sufficiently weak” perturbation Fermi’s Golden Rule gives the transition
probability per unit time W :

W = 2π

�

∣∣〈Ψout|Hint|Ψin〉
∣∣2ρ(E)

= V mpdΩ

4π2�4
· |Hif |2. (2.32)

The density of final states ρ(E)= dn/dE, which enters the calculation can be ob-
tained from the ratio of the actual to the minimally allowed phase-space volumes:

dn

dE
= V 4πp2dp dΩ

4π

(2π�)3dE
, (2.33)
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E = p2/2m and dp/dE =m/p =E/c2p. Thus

ρ(E) = dn

dE
= V

pmdΩ

(2π�)3

= V
pEdΩ

(2π�)3c2
. (2.34)

W becomes the cross section according to the definition on p. 14 with the incident
particle-current density j = v/V = p/mV :

dσ = W

j
= W

(
p

mV
)
= V 2m2dΩ

4π2�4
· |Hif |2. (2.35)

The 1st Born approximation consists in using only the first term of the Born series
(see Sect. 10.7) with plane waves in the entrance and exit channels:

Φin = 1√
V

ei�ki �r and Φout = 1√
V

ei�kf �r . (2.36)

If Hint = U(r) signifies a small time-independent perturbation then, with �K =
�kf − �ki

|Hif | =
∣∣∣∣ 1

V

∫
ei �K�rU(r)dτ

∣∣∣∣ (2.37)

and

dσ

dΩ
=
(

m

2π�2

)2∣∣∣∣
∫

ei �K�rU(r)dτ

∣∣∣∣
2

= ∣∣f (θ)
∣∣2. (2.38)

Inserting the Coulomb potential U(r)= C/r the classically calculated formula for
the Rutherford scattering cross section is obtained. The cross section is (with the
constant Z1Z2e

2/16 and the substitution u= iKr cos θ and du=− sin θ dθ(iKr))

dσ

dΩ
= const ·

∣∣∣∣
∫

ei �K�r · 1

r
dτ

∣∣∣∣
2

= const ·
∣∣∣∣
∫ ∫

1

r
eiKr cos θ 2π sin θ dθr2dr

∣∣∣∣
2

= const · 2π

∣∣∣∣
∫ ∫

r

iKr
eu dudr

∣∣∣∣
2

= const ·
(

2π

iK

)2∣∣∣∣
∫

r

(
eiKr cosπ − eiKr cos 0)dr

∣∣∣∣
2

= const ·
(

2π

iK

)2∣∣∣∣
∫

r

(
e−iKr − eiKr

)
dr

∣∣∣∣
2
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= const ·
(

2π · 2i

iK

)2∣∣∣∣
∫ ∞

0
sinKr dr

∣∣∣∣
2

. (2.39)

The integral is undefined. This is circumvented by a screening Ansatz after Bohr,
which corresponds to the real situation of the screening of the point Coulomb po-
tential by the electrons of the atomic shell, with the screening constant α. With

∫ ∞
0

e−αr sinKrdr = K

K2 + α2
(2.40)

one obtains
(

dσ

dΩ

)
R,s

=
[

2μZ1Z2e
2

�2[α2 + 4k2 sin2(θ/2)]
]2

(2.41)

with the momentum transfer K = 2k sin(θ/2) for elastic scattering. This cross sec-
tion is finite for θ→ 0◦. By letting the screening constant go to zero a cross section
results, which is identical with that from the classical derivation:

(
dσ

dΩ

)
R

= lim
α→0

(
dσ

dΩ

)
R,s

=
(

Z1Z2e
2

4Ekin

)2

· 1

sin4(θ/2)
. (2.42)

The extension of the derivation of the Rutherford cross section to an extended
(especially a homogeneous and spherically-symmetric) charge distribution is sim-
ple and leads to the fundamental concept of the form factor. Such a distribution is
suggested by the approximately constant nucleon density with r in most nuclei (see
Fig. 2.8), but cannot represent the density behavior around R very well.

We start with the Coulomb potential of such an extended homogeneous spherical
charge distribution with radius R (see Fig. 2.4). It is calculated with Gauss’s theorem
of electrostatics (for units see the footnote 2 in Sect. 2.2.) At r = R the interior and
exterior potential must be suitably matched.

V (r)=
{

ze2 1
r

for r > R

ze2 1
2R

(3− r2

R2 ) for r ≤R.
(2.43)

In the exterior space the potential is identical with that of a point charge, continues
at r = R to a parabolic shape in the interior of the distribution. It is therefore to be
expected that in the scattering with sufficiently high energy the scattering cross sec-
tion would strongly deviate from the Rutherford cross section as soon as the nuclear
surface is touched. In addition, the onset of the short-range strong interaction will
influence the scattering, especially by absorption. For the calculation of the cross
section an integral over the contributions from all charge elements dq = Zeρ(�r)dτ



24 2 Classical Cross Section

Fig. 2.4 Coulomb potential
of a spherical homogeneous
charge distribution in relation
to the point-Coulomb
potential that is valid outside
the charge distribution,
normalized to V (r =R)= 1

to the potential U(�r)=−Z1Z2e
2

R
· e−αRρ(�r)dτ has to be performed.

U
(�r ′)=−Z1Z2e

2
∫

ρ
(�r ′)e−αR

R
dτ. (2.44)

By inserting this into the Born approximation Eq. (10.25) (with d �R = d�r ′ and
�R = �r ′ − �r) one obtains:

dσ

dΩ
=
(

Z1Z2e
2m

2π�2

)2

·
[∫

ρ(�r)ei �K�rdτ ·
∫

e−αR

R
ei �K �Rd �R

]2

=
[
F
( �K2) K

K2 + α2

]2

. (2.45)

The cross section factorizes into two parts, one of which (after a transition to the
limit α→ 0) results again in the point cross section, the other in the form factor:

dσ

dΩ
=
(

dσ

dΩ

)
point nucleus

· ∣∣F ( �K2)∣∣2. (2.46)

This separation is characteristic for the interaction between extended objects and
signifies a separation between the interaction (e.g. the Coulomb interaction) and the
structure of the interacting particles.

For rotationally-symmetric problems the form factor has a simplified interpreta-
tion:

F(K)=
∫

ρ(r) exp(i �K�r)2πr2dr sin θdθ. (2.47)

On substitution u= iKr cos θ and du=−iKr sin θdθ this becomes
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Fig. 2.5 Sampling functions for different momentum transfers show that in order to sample details
of a given structure (e.g. the shape around the radius of a nuclear density (charge or mass) distri-
bution) the momentum transfer (given by the incident energy and the scattering angle) has to have
an appropriate intermediate value. In the example shown the value of K = 0.5 fm−1 is suitable for
sampling the region around the nuclear radius of 5.0 fm. The vertical dotted lines indicate a 10 to
90 % sampling region

F(K)= 2π

∫
ρ(r)eur2dr

du

−iKr

=
∫

ρ(r)4πr2dr ·
(

sin(Kr)

Kr

)
︸ ︷︷ ︸

purely real

. (2.48)

Thus the form factor is a folding integral of the density with the sampling func-
tion (in parentheses). This function is oscillatory and its oscillation “wavelength”
1/K (which depends on the energy of the transferred radiation) has to be adjusted
to the rate of change of the density. If the oscillation is too frequent the integral
results in ≈0 revealing no information on ρ. If it is too slow the sampling function
is ≈constant, and the integral results in just the total charge Ze. Figure 2.5 illus-
trates this for different momentum transfers on a given nuclear density distribution.
Experimentally the form factor is obtained as the ratio

(
dσ

dΩ

)
experimental

/(
dσ

dΩ

)
point, theor.

. (2.49)

The charge distribution (or more generally: the density distribution e.g. of the
hadronic matter) is obtained by Fourier inversion of the form factor F :

ρc(�r)= 1

(2π)3

∫
0→∞

Fc

( �K2)e(−i �K�r)d �K. (2.50)
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This means that (in principle) for a complete knowledge of ρ(�r) F must be known
for all values of the momentum transfer. Since ρ(�r) for small �r is governed by the
high-momentum transfer components of �K this cannot be achieved in practice. For
this reason the following approximations may be used:

• Model assumptions are made for the form of the distribution: e.g. homogeneously
charged sphere, exponential, Yukawa, or Woods-Saxon behavior.

• The model-independent method of the expansion of ei �K�r into moments.

2.3.3 Ansatz for Models

It is useful to get an impression of the Fourier transformation of different model
density-distributions as shown in Fig. 2.6: It is a general observation that “sharp-
edged” distributions lead to oscillating form factors (and therefore cross sections),
and smooth distributions to smooth form factors. In agreement with our Ansatz a
δ distribution (characteristic for a point charge or mass) corresponds to a constant
form factor (this is called “scale invariance”).

2.3.4 Expansion into Moments

With the power-series expansion of ei �K�r the form factor becomes

F
( �K2)∝

∫
ρ(�r)

[
1+ i �K�r − ( �K�r)2

2! ± · · ·
]
dτ. (2.51)

By assuming a spherically symmetric distribution (with pure r dependence only)
and with a normalization such that for a point object the constant form factor is 1,
we have:

F
( �K2)= 1− const ·K2

∫
0→∞

r2ρ(r)dτ ± · · · . (2.52)

The second term contains the average squared radius 〈r2〉 = r2
rms . For small values

of K2〈r2〉 one gets in a model-independent way (i.e. for arbitrary form factors):

F
( �K2)≈ 1− 1

6
K2〈r2〉. (2.53)

Of course this approximation is becoming worse with smaller r (because one needs
higher moments), i.e. if one wants to resolve finer structures.
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2.3.5 Results of Hadron Scattering

After accelerators were available charge and matter density distributions of nuclei
and their radii could be investigated by probing the distributions with hadronic pro-
jectiles. With light as well as with heavy ions, but also with neutrons as projectiles it
is evident that they are extended and possess structure. The consequence is that de-
tailed statements about the density distributions are difficult to make and may need
the deconvolution of the contributions from projectile and target nuclei. However,
statements about nuclear radii are possible, even with quite simple semi-classical
assumptions such as absorption between nuclei setting in sharply at a well-defined
distance and pue Coulomb scattering beyond that distance. Systematic α scattering
studies on many nuclei (where we already have strong absorption at the nuclear
surfaces) revealed good A1/3 systematics for the nuclear radii. A dependence of

σα,α =R0
(
A1/3 + 41/3) (2.54)

was fitted to the data, assuming a sharp-cutoff model for the cross sections and
taking into account the finite radii of both nuclei. It yielded a radius constant of

R0 = 1.414 fm. (2.55)

However, when considering the range of the nuclear force for both nuclei of about
1.4 fm a radius constant of ≈1.2 fm resulted.

Heavy-ion scattering experiments with a great number of different pairs of col-
lision partners yielded a very good systematics shown in Fig. 2.7 that becomes evi-
dent when the relative cross sections were plotted against the distance parameter d ,
for which an assumed A1/3 dependence of the radii of both collision partners was
applied

d =D0
(
A

1/3
1 +A

1/3
2

)−1 (2.56)

with D0 the distance of closest approach, as calculated from energies and scattering
angles. A well-defined sharp distance parameter of d0 = 1.49 fm for the onset of
absorption resulted. This corresponds to a universal radius parameter of r0 = 1.1 fm
if the range of the nuclear force is set to 1.5 fm. The simple model applied was to
assume

• Pure point-Rutherford scattering outside the range of nuclear forces,
• Ratio of elastic to Rutherford cross section

dσ

dσR

= 1+ Pabs(D) (2.57)

and

Pabs(D)=
{

0 for D ≥D0,

1− exp(
D−D0

�
) for D < D0,

(2.58)

with Pabs(D) the probability of absorption out of the elastic channel, D0 the in-
teraction distance, and � the “thickness” of the transition region.
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Fig. 2.7 Plot of the scattering
cross sections (relative to the
Rutherford cross section) of
many different HI pairings
vs. the distance parameter d

in fm. The data used for the
fit are in Ref. [OGA78], see
also [CHR73]

The latter depends on the A of the nuclei involved and could be determined with
good accuracy to be e.g. �≈ 0.33 fm for scattering of nuclei near 40Ca from 208Pb.

Here we will discuss the results obtained with charged projectiles, for which
the interaction is exactly known (e.g. electrons, which do not interact via the strong
force) whereas e.g. for neutrons one needs nuclear scattering models (e.g. the optical
model, see Sect. 10.3). The assumption that neutron and proton radii of nuclei are
about equal has proved too simple with the evidence of neutron-halo and neutron-
skin nuclei, see Sect. 2.4.2.

2.4 Electron Scattering

Since all electrons (and all leptons) are considered to be point-particles they are—as
long as not the hadronic interaction region proper shall be probed—the ideal projec-
tiles. They “see” the electromagnetic (and weak) structure of the nuclei. Of course,
the treatment must be relativistic. Instead of the Rutherford- (point-Coulomb) ap-
proach one has to use the proper theory.

Besides the relativistic treatment differences to the (classical) Rutherford cross
section come about by the lepton spin. The derivation of the correct scattering cross
section relies on the methods of Quantum Electrodynamics (QED) and techniques
such as the Feynman diagrams. Here only the results will be presented. The elec-
tromagnetic interaction between the electron and a hadron is mediated by the ex-
change of virtual photons, which is accompanied by a transfer of energy and mo-
mentum. The wavelength of these photons derives directly from the momentum
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transfer �K = 2(hν/c) sin(θ/2) to be

λ̄de Broglie = �

�K
= 1/K. (2.59)

The argument of diffraction limitation may also be formulated in the complemen-
tary time picture; it may be said that at long wavelengths, due to the uncertainty
relation, one needs long measurement times, in which the projectile sees only a
time-averaged picture of the object considered while small wavelengths allow mea-
surement times equivalent to snapshots of the object or its substructures (partons).

In contrast to low-energy Rutherford scattering, in which only the electric
charges interact, in charged lepton scattering at higher (relativistic) energies there
is also a magnetic interaction, and in neutrino scattering only the weak interaction
is acting. Principally in lepton scattering at higher energies three distinct regions of
momentum transfer can be distinguished:

• Elastic scattering at small momentum transfer is suitable to probe the shape of the
hadrons. The resulting two form factors FE (electric) and FM (magnetic) produce
again the charges and current (magnetic moment) distributions and the radii of the
hadrons by Fourier inversion.

• Weakly inelastic scattering at higher momentum transfer leads to excitations of
the hadrons (e.g. Delta- or Roper excitations (resonances) of the nucleons). The
form factors are quite similar to those from the elastic scattering, which means
that we have some excited state of the same nucleons.

• Deep-inelastic scattering is the suitable method to see partons inside the hadrons.
In this way in electron and muon scattering the quarks bound in nucleons and
their properties (spin, momentum fraction) and also the existence of sea quarks
(s quark/anti-quark pairs) were identified. Especially the pointlike character of
these constituents was shown by the near constancy of the form factors (here
called: structure functions) with the momentum transfer (Bjorken scaling).

Here only elastic scattering will be discussed in detail. In QED theory for the differ-
ential cross section the Rosenbluth formula was deduced:

dσ

dΩ
=
(

dσ

dΩ

)
point
·
(

F 2
E + bF 2

M

1+ b
+ 2bF 2

M tan2 θ

2

)
. (2.60)

The point cross section (dσ/dΩ)point is a generalized Rutherford cross section
and is calculable with the methods of QED (e.g. using Feynman diagrams). The
most general form of this cross section (the Dirac scattering cross section) contains
as main part the electrostatic scattering, a contribution from the magnetic (spin-
dependent) interaction, which depends on the momentum transfer, and a correction
for the nuclear recoil:

(
dσ

dΩ

)
Dirac
= α2

4p2
0 sin4(θ/2)

[
1+ 2p0

M
sin2 θ

2

](
cos2 θ

2
+ q2

2M2
sin2 θ

2

)
. (2.61)
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For small energies or momentum transfers the cross section simplifies to:

(
dσ

dΩ

)
Mott
= [2e2(E′c2)]2

q4
· E
′

E
cos2 θ

2
. (2.62)

The symbols used here mean: q = four-momentum transfer, b=−q2/(4m2c2), E′,
and E the energies of the outgoing and incoming electrons. FE and FM are the elec-
tric and magnetic form factors of the nucleons. Experimentally they are obtained
from the measured data by least-squares fitting of the parameters of the theory,
graphically through the Rosenbluth plot, i.e. by plotting (dσ/dΩ)exp/(dσ/dΩ)point
against tan2(θ/2).

In analogy to the Rutherford cross section here the form factors (or structure
functions) are Fourier transforms of the charge and current-density distributions (or:
distributions of the (anomalous) magnetic moments). Like there, these distributions
result from Fourier inversion of the form factors, and at the same time quantitative
values of the shape and size of the nucleons are obtained.

The measured form factors as functions of q2 are normalized such that for q→ 0
they become the static values of the electric charge and magnetic moments. Except
for the electric form factor of the neutron all others are well described by the dipole
Ansatz corresponding to a density distribution of an exponential function.

An early model for the charge-density distribution was—besides the homoge-
neously charged sphere with only one parameter, its radius—a modified Woods-
Saxon distribution with three parameters, because, besides the radius parameter r0
and the surface thickness a, also the central density ρ0 must be adjustable because
it varies especially in light nuclei:

ρc(r)= ρ0

1+ e
r−r1/2

a

. (2.63)

The surface thickness t = 4 ln 3 · a signifies the 10 to 90 % thickness range cen-
tered around r1/2. From this parametrization an electromagnetic radius constant of
r1/2 = 1.07 fm, a surface-thickness parameter of a = 0.545 fm, and a central den-
sity of ρN = 0.17 nucleons/fm3 or 1.4 · 1014 g/cm3 for nuclei with A > 30 have
been derived. The description of “modern” density distributions is not so simple be-
cause the nuclei have individual and more complex structure even if the essential
features such as the three parameters do not vary too much. The detailed structure
information is obtained from model-independent approaches such as Fourier-Bessel
expansions. Radii are given as rms radii or converted into the equivalent radii R0. R0
is the radius of a homogeneously charged sphere of equal charge using the relation

rrms =
√

3/5R0. (2.64)

The definition of the (model-independent) Coulomb rms radius is

rrms =
〈
r2〉1/2 =

[
1

Ze

∫ ∞
0

r2ρC(r)4πr2dr

]1/2

. (2.65)
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Fig. 2.8 Charge density
distributions of different
doubly closed-shell nuclei.
The central density is only
weakly changing over the
nuclear chart whereas the
radii increase with A1/3.
After [FRO87]

Nuclear radii from muonic atoms are often more precise than those from lep-
ton scattering but they are in a way complementary in relation to the radius region
probed they measure different moments). Thus, the results of both methods can be
combined (Fig. 2.8). The distributions are quite well reproduced by “mean-field”
calculations, see e.g. [FRO87, DEC68]. The salient results of these investigations
are:

• From the distributions a central density is derived, which for heavier nuclei is con-
stant in first approximation. This and the systematics of radii are characteristic for
nuclear forces; their properties are: short range, saturation and incompressibility
of nuclear matter, and suggest the analogy to the behavior of liquids, which led
to the development of collective nuclear models (liquid-drop models, models of
nuclear rotation and vibration).

• The radii follow more or less a simple law r = R0A
1
3 . For the radius parameter

R0 = 1.24 fm is a good value. From Coulomb-energy differences of mirror nuclei
a value of R0 = (1.22± 0.05) fm has been derived.

• The surface thickness of all nuclei is nearly constant with a 10–90 % value of
t = 2.31 fm corresponding to a = t/4 ln 3 = 0.53 fm. This is explained by the
range of the nuclear forces independent of the nuclear mass number A.

• The nucleons have no nuclear surface. The charge and current as well as the mat-
ter densities of the proton follow essentially an exponential distribution. For the
neutron the charge distribution is more complicated because volumes of negative
and positive charges must compensate each other to zero notwithstanding some
complicated internal charge distribution that originates from its internal quark-
gluon structure.
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• The rms radii for the current distributions of protons and neutrons and the charge
distribution of the protons are 0.88 fm. Recently, with increased experimental
precision an unresolved discrepancy between values from lepton scattering and
muonic-atom work has been published. The rms charge radius of the neutron it is
0.12 fm, which means that there must be positive and negative charges distributed
differently over the nuclear volume.

• Thus, nucleons are not “elementary”, but have complicated internal structures.

2.4.1 Matter-Density Distributions and Radii

The matter density—apart from and independent of the charge or current distri-
butions—can be investigated only by additional hadronic scattering experiments
because neutrons and protons in principle need not have the same distributions in
nuclei.

Hadronic Radii from Neutron Scattering The total cross sections of 14 MeV
neutron scattering under simple assumptions have been shown to also follow a A1/3

law, see e.g. Ref. [SAT90], p. 32, cited from Ref. [ENG74]. The assumptions were
that the sharp-edged range of the nuclear force was 1.2 fm and the total cross section
σtot follows 2π(R + λ̄)2 with R the nuclear (hadronic) radius, i.e. the nuclei are
considered to be black (totally absorbent) to these neutrons, which is not exactly
fulfilled, as the structures in this dependence show. These can be explained with the
optical model, see below. The radius constant extracted from this systematics is

Rhadr = 1.4 fm. (2.66)

In addition, there have been attempts to extract the neutron radius of 208Pb from
parity-violating electron scattering [ABR12].

2.4.2 Special Cases—Neutron Skins and Halo Nuclei

Neutron Skins Different from halos skins are a volume effect expected and ap-
pearing in heavier nuclei with increasing neutron excess (and densities over proton
densities). The question of a neutron skin in these nuclei is interesting, and only re-
cently such a thin skin was consistently shown to exist, see e.g. [TSA12] and refer-
ences therein. Among the hadronic probes used have been protons, α’s, heavy ions,
antiprotons, and, recently, also pions e.g. on 208Pb, 48Ca and others. The extraction
of rms radii requires some model assumptions concerning the reaction mechanism
and the interplay of hadronic and Coulomb interactions. The pion results are derived
from two sources: pionic atoms (in analogy to the derivation of the electromagnetic
radii from muonic atoms) and total reaction cross sections of π+ [FRI12].
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Fig. 2.9 Halo nuclei at the driplines of the chart of nuclides

The neutron skin is related to the symmetry energy, which plays a role in the
mass formula of Bethe and Weizsäcker for the binding energies of nuclei, espe-
cially for “asymmetric” nuclei with strong neutron excess, but also for astrophysics
and nuclear-matter calculations. The radius of neutron stars is closely related to the
symmetry energy value in high-density nuclear matter, see e.g. Ref. [TSA12].

Usually the quantity

δRnp =
〈
r2〉1/2

n
− 〈r2〉1/2

p
(2.67)

is taken as a measure of skin thickness. The experimental values deduced from dif-
ferent experiments are on the order of δRnp ≈ 0.2 fm.

Halo Nuclei At the “rims” of the valley of stability (the neutron or proton
driplines) there are a number of nuclei that have much larger radii than expected
from the systematics. 11B has about the same radius as 208Pb. Also the deuteron has
an rms radius of about 3.4 fm. In all cases the nuclei seem to have a halo of weakly
bound neutrons (or protons), which surrounds a more strongly bound core. Differ-
ent cores are possible, i.e. besides the strongly bound α making 6He and 8He one-
and two-neutron halo nuclei and 8B and 10C seem to form one- and two-proton ha-
los, also 9Be forms some type of core. Indications of halo structures were—among
others—the exceptionally large cross sections in heavy-ion reactions, a narrower
momentum distribution of the nucleons in the nuclei, and larger radii, as compared
to the A1/3 law. Figure 2.9 shows the low-mass portion of the chart of nuclides
where halo nuclei have been found. The scientific interest in halo nuclei is mani-
fold. They were among the first where the driplines have been reached. The results
show that the shell structures established for the valley of stability can be extended
to “exotic” nuclei, but with modifications of the closed shells, i.e. with new magic
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Fig. 2.10 Coat of arms and
symbol of the Renaissance
Borromean family (and other
north Italian families like the
Sforzas) at their castle on the
Borromean island Isola Bella
in the Lago Maggiore, Italy

numbers emerging. The low mass numbers invite application of microscopic theo-
ries such as Faddeev-(Yakubowsky), no-core shell models, Green’s function Monte
Carlo (GFMC), and other approaches to test nuclear forces, e.g. three-body forces,
or effective-field (EFT) approaches. Impressive results have been obtained by such
“ab initio” calculations, see e.g. Ref. [PIE01, DEA07]. A special role is played by
the so-called Borromean nuclei, i.e. those that consist of a core plus two weakly
(un)bound neutrons at large radii, and for which any of the two-particle subsystems
are unbound (Example: 4He+n+n). They can be treated by well-established three-
body methods; see also Chap. 9.2. Their name is derived from the three intertwined
Borromean rings that fall apart when one ring is removed and hold together only
when united, see Fig. 2.10. Many nucleosynthesis processes pass through nuclei that
are neutron rich or neutron poor and are not well known. Thus, for astrophysics, a
better understanding of all these reactions and their reaction rates is essential.

Since we deal with unstable (radioactive) nuclei the “radioactive-ion beams
(RIB)” facilities, many of which are being developed, are especially suited for their
investigation (for details see Chap. 15). These facilities collect, focus and acceler-
ate nuclear reaction products in order to use them as projectiles in reactions. Fig-
ures 2.11 and 2.12 show the properties typical for halo nuclei:

• They have radii, which are larger than predicted from the usual A1/3 systematics.
• Their density distributions reach further out than usual.
• In agreement with this they show narrower momentum distributions of the

breakup fragments of the halo nuclei (one example: 19C→ 18C+n, compared to
17C→ 16C+ n).

• The halo structure has to be distinguished from a neutron skin structure (see
the preceding subsection). The latter is a volume effect caused by the increas-
ing numbers of neutrons over protons with increasing A, whereas in light nuclei,
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Fig. 2.11 Schematic
fragment-momentum
distributions from breakup
reactions (left) and density
distributions in halo nuclei,
see e.g. Ref. [DOB06]

Fig. 2.12 Radii of halo
nuclei. There exist (slightly
varying, depending on
extraction methods from
experiments) numbers from
different sources, especially
from the earliest systematics
from Ref. [TAN85]. Here
they were taken from
Refs. [OZA01] and [KRI12].
For comparison a plausible
rms radius function for
“normal” nuclei is shown

in approaching the n (or p) driplines, the binding energy of additional neutrons
(or protons) approaches zero, making the nuclei nearly unbound which results in
large radii.

The latest discovery at present of a halo nucleus is that of 22C [TAN10] which
showed an increased reaction cross section and an rms radius of rrms = 5.4±0.9 fm,
both larger than expected from the usual systematics.

2.5 Exercises

2.1. (a) Show how kinematical arguments lead to Rutherford’s conclusions on a
(compact and) heavy target nucleus (gold).

(b) In the semi-classical theory of Bethe and Bloch (see Eq. (17.1)) the
slowing-down of charged particles is explained with their being scattered
by atomic electrons. What is different and what are the consequences from
kinematics in this case: effects on the α projectiles and on the recoils elec-
trons?

2.2. The “first” artificial nuclear reaction induced by an accelerated beam (Cock-
roft/Walton, 1932) was 7

3Li(p,α)4
2He at an incident energy of 150 keV.
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(a) Calculate the Q value of the reaction from the known masses of the parti-
cles (p: 1.007289 u, α: 4.002425 u, and 7

3Li: 7.014907 u).
(b) What are the energies of the two α’s under the lab. angles of 0° and 90°?
(c) Does the inverse, i.e. time-reversed reaction have an energy threshold, and

at which α lab. energy?

2.3. Chadwick discovered the neutron in 1932 by correctly identifying the energetic
radiation emitted from the reaction α+ 9

4Be→ 12
6 C+ 1

0n (induced by α’s from
a Po source). The recoil energies transferred to the protons and 14N nuclei of
the filling gas of the ionization chamber were measured to be 5.7 MeV and
1.6 MeV, respectively (masses: 9

4Be: 9.011348 MeV; 14N: 14.002863 u).

(a) Which value of the neutron mass (in u) was obtained by Chadwick?
(b) Other nuclear physicists (among them the Curies) had erroneously inter-

preted the energetic radiation as γ radiation. How high would their energy
have to be if they had transferred their energy by elastic Compton scatter-
ing (see Eq. (17.7)) on the protons or 14N nuclei? Could such energies of
γ transitions occur in nuclei?

(c) What exactly is their error of reasoning?

2.4. An 16
8 O nucleus is scattered elastically at 80 MeV and 150° from a 179

79 Au nu-
cleus at rest in the lab. system.

(a) How close to each other (in a semi-classical picture) do the centers of the
two nuclei get?

(b) Do the two nuclei “feel” the (hadronic) nuclear force, if a radius constant
R0 = 1.25 fm and as range of the force the value resulting from pion ex-
change + Heisenberg’s uncertainty relation are assumed?

2.5. To resolve substructures (“partons”) in nuclei (or nucleons), e.g. by elastic
electron scattering the wavelength of the probing radiation must be chosen
sufficiently small, more precisely: the wavelength of the exchanged (virtual)
radiation.

(a) What electron energy is required to probe the surface of a 208
82 Pb nucleus, of

a 4He nucleus, the rms-radius range of a proton, or quark structures inside
nucleons in the ≤1 · 1018 m range?

(b) What about using muons?
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Chapter 3
Role of Conservation Laws and Symmetries
in Nuclear Reactions

3.1 Generalities

Besides the classical conservation laws in nuclear and particle physics a number
of non-classical conservations laws (e.g. that of parity conservation) or symme-
tries, respectively (e.g. that of time-reversal invariance or the exchange symmetry
of identical particles) are important. Historically, the discoveries of violations of
laws, which so far were considered valid without any doubt were extremely spec-
tacular and equaled small revolutions of our view of the world. It was shown that the
validity of conservation laws or symmetries depends on the type (or strength) of the
fundamental interaction, which is considered and that their number increases with
increasing strength of the interaction. Table 3.1 shows this for the most prominent
symmetries.

If F is the operator of a conservation quantity and is not explicitly dependent
on the time t , then this is equivalent to the commutativity of F with the Hamilton
operator H and there exist eigenfunctions of H, that are simultaneous eigenfunctions
of F. (If F depends explicitly on time it is additionally required that also ∂F/∂t = 0.)

In simple cases the commutativity may be shown directly. Examples are: the
Hamilton operator and the conservation of the total energy E lead to the statement
that the physical process considered must not be time-dependent; analogously for
momentum conservation and space independence, and angular momentum conser-
vation and angle independence in rotations.

From this it is immediately clear that conservation laws are connected to sym-
metries, which is expressed [NOE18] by the famous.

Noether Theorem (1918) If a physical law is invariant under a symmetry transfor-
mation then there exists a corresponding conservation law.

The operator U is a symmetry operator if U|Ψ 〉 fulfills the same Schrödinger equa-
tion as |Ψ 〉:

i�
d

dt

(
U|Ψ 〉)=HU|Ψ 〉 (3.1)

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
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Table 3.1 Conservation
quantities and their violation,
and fundamental interactions:
conservation: +, violation: −

Conservation quantity
or symmetry

Strong EL-Mag Weak

Interaction

Mass m/Energy E + + +
Momentum p

Angular Momentum
L, S

Charge Q + + +
Isospin T + − −
Strangeness S + + −
Charm C

Beauty B, Topness T

Parity P + + −
Charge Conjugation C + + −
Baryon Number B + + +
Lepton Number (s) + +
Hypercharge Y + + −
Time Reversal T + + −
Charge Parity CP + + −
CPT + + +

Then also, together with UU−1 = 1

i�
d

dt
|Ψ 〉 =U−1HU|Ψ 〉, (3.2)

whence, together with i�d/dt |Ψ 〉
[H,U] = 0. (3.3)

If the explicit commutativity cannot be shown directly because e.g. the potential
in the Hamilton operator is not or insufficiently known in analytic form (which is
a case typical for nuclear physics) the behavior under the corresponding symmetry
operation must be investigated. In the case of time-reversal invariance there is, be-
cause of the properties of the time-reversal operator, no conservation quantity, but
only a symmetry.

Another important distinction is that between discrete and continuous trans-
formations. The discrete transformations have multiplicative, the others additive
quantum numbers. Typical discrete transformations are the parity operation or the
exchange-symmetry operation. Continuous operations are rotations in space (the
conservation quantity is the angular momentum) or isospin space (the conservation
quantity is the isospin). Translations in space and time have the conservation quan-
tities of momentum and energy. A detailed treatment of symmetries, invariances,
conservation laws, etc. can be found in Ref. [FRA86].
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3.1.1 Discrete Transformations

The operator of a symmetry transformation must be unitary: U† =U−1. The twofold
application of the transformation leads back to the original state. The eigenvalues of
the transformation operator are therefore ±1. For the parity operation (see below)
this means

PΨ = πΨ and P 2Ψ = Ψ. (3.4)

In order for a symmetry operator to represent an observable, i.e. to have real eigen-
values it must be, in addition, hermitean: U=U†. For discrete transformations this
is fulfilled and the symmetry operator belongs to a conserved quantity (example:
parity operator, parity conservation).

3.1.2 Continuous Transformations

The symmetry operator connects continuously to (i.e. it is only infinitesimally dif-
ferent from) the unit (identity) operation and is generated by a generator F:

U= eiεF = 1+ iεF+ (iεF)2

2! + · · · (3.5)

with ε real and <1. The condition for unitarity of U is (for infinitesimal transforma-
tions)

U†U ≈ (1− iεF†)(1+ iεF) (3.6)

= 1− iε
(
F† − F

)+O
[
(iεF)2]= 1 (3.7)

i.e.

F† = F, (3.8)

which shows the hermiticity of F. Thus, F is the observable belonging to U. If U is
a symmetry operator, which commutes with H, thus also with F:

H(1+ iεF)− (1+ iεF)H= 0, (3.9)

i.e.

[H,F] = 0. (3.10)

The quantity F is the conservation quantity belonging to the symmetry transforma-
tion U.

Conservation laws lead to quantum numbers, selection rules (forbiddenness), and
branching ratios, which may determine the behavior of nuclear reactions.
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3.2 Conserved Quantities in Nuclear Reactions

In nuclear reactions, especially those mediated by the strong and electromagnetic in-
teractions, a number of conserved quantities are taken for granted, e.g. the existence
and the conservation of the electric charge or the baryon number. It can be shown
(but will not be discussed here in detail) that these belong to a class of quantities
with additive quantum numbers that are conserved because of gauge-transformation
properties of wave functions or field operators. Charge conservation is thus a con-
sequence of the invariance of the S-matrix against gauge transformations of the
electromagnetic field. This gauge invariance is a basic property of all field theories
such as QCD.

3.2.1 Energy Conservation

The conservation of the total energy (rest + kinetic energy) plays an important role
in the dynamics and in the kinematics of nuclear reactions. Here only the kinematics
will be mentioned briefly. Basically it is the application of the laws of conservation
of energy and momentum to nuclear reactions. For the planning and interpretation of
experiments kinematics is immensely important and deserves more space than can
be provided here. It should be noted that the correct kinematics is relativistic, and
the non-relativistic approach is an approximation for lower energies. Despite some
of the non-relativistic formulations being simpler at first sight the use of relativistic
invariants with e.g. the concept of the invariant total energy that includes the rest
energy as well as kinetic energy, on the other hand, makes the description more
consistent and lucid.

The Q value of nuclear reactions is given by the mass differences between exit-
and entrance-channel particles

Q=
[
(m1 +m2)−

∑
noutmi

]
c2. (3.11)

Because of the constancy of the total energy Q can also be expressed by the
difference between the kinetic energies. The Q value determines the quite different
behavior of endothermic (Q < 0), elastic (Q= 0), or exothermic (Q > 0) reactions,
especially at low energies. The endothermic reactions start at a threshold energy,
at which the energy of the relative motion (“energy in the center-of-mass system”
Ec.m.) is just equal to Q.

3.2.2 Momentum Conservation

The conservation of momentum is quantum-mechanically equally important as in
classical collision processes. Together with energy conservation it determines the
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kinematics of all decays and nuclear reactions. Certain processes like pair creation
are e.g. possible only if a heavier collision partner takes care of the momentum
conservation.

3.2.3 Reaction Kinematics

Another important application of both conservation laws is the transformation (non-
relativistic: Galilei transformation, relativistic: Lorentz transformation) between dif-
ferent coordinate systems, especially between the laboratory and the center-of-mass
(c.m.) systems. The two-body system of the entrance channel of a reaction is re-
duced to a one-body problem by separation of the relative motion from the mo-
tion of the center of mass. For the classical equations of motion as well as for the
Schrödinger equation we see that the motion of the center of mass is straight and
uniform and is not influenced by the collision dynamics. The collision dynamics,
however, depends only on the relative motion, to which corresponds the energy
available for a reaction, which is always smaller than the total energy or the total
kinetic energy in the laboratory system. Theoretical considerations are normally
performed in the c.m. system and experimental data must therefore be transformed
kinematically into this system (or also vice versa). Full expositions of the kinematics
of nuclear (and particle) reactions are part of many books on nuclear physics/nuclear
reactions (see e.g. Refs. [MAR70, PER82, SAT90, FRA86, PER82, MAR68] that
only when necessary kinematical considerations are shown in this text.

3.2.4 Conservation of Angular Momentum

Angular-momentum conservation is connected with continuous transformations,
namely with rotations in 3D space. The generator of an infinitesimal rotation δφ

e.g. about the z-axis is

R = 1+ δφ
∂

∂φ
. (3.12)

With the z component of the angular momentum operator J

Jz =−i�

(
x

∂

∂y
− y

∂

∂x

)
=−i�

∂

∂φ
(3.13)

one gets:

Rinf = 1+ i

�
Jzδφ (3.14)

or

Rfin = lim
n→∞

(
1+ i

�
Jzδφ

)n

= exp

(
i

�
Jz�φ

)
for finite rotations. (3.15)
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Jz is conserved ([Jz,H] = 0) if the potential does not explicitly depend on φ.
Similarly, J or J2 are conserved if the potential depends explicitly only on r , but not
on θ,φ, i.e. like in classical physics for central forces, because the operator of J acts
only on angular variables.

The usual description of nuclear reactions takes care of the conservation of an-
gular momentum by describing the observables in the angular-momentum repre-
sentation. The solution of the Schrödinger equation is normally done in spherical
polar coordinates. The angular-momentum eigenfunctions Ym

� (θ,φ) are the angle-
dependent parts of the wave function and are separable from the spatial wave-
function part. For particles with spin the description is much more complicated be-
cause the orbital angular momentum and the channel spins of the incoming and
the outgoing channels must each be coupled to the total angular momentum J ,
which is the only conserved angular-momentum quantity. Depending on the ob-
servable, Racah algebra, i.e. 3j- 6j- or 9j-symbols may be used, see also Sect. 22.3
and Chap. 5. The most general formalism (for neutral particles) was published by
Welton [WEL63], formulating general (polarization) observables of the exit chan-
nel as functions of those of the entrance channel in a partial-wave expansion and
showing the clear separation between the dynamics (transition-matrix elements),
angular-momentum algebra, and the geometry (rotation functions DL

MM ′(θ,φ,β)).
This formalism was extended to charged particles by Heiss [HEI72] (for details, see
Chaps. 5 and 7).

For spinless particles and central forces the orbital angular momentum � is a
conserved quantity, for reactions with particles, whose spin is �= 0 only the total
angular momentum J is conserved. For two-particle nuclear reactions we thus have

��in + �sa + �sA→ �J ( Intermediate state)→ ��out + �sb + �sB. (3.16)

The vector sum �Sin = �sa + �sA or �Sout = �sb + �sB are the entrance or exit channel
spins.

3.2.5 Conservation of Parity

The parity operation P is the spatial reflection of the physical system at the origin
and is a discrete transformation:

P �r =−�r, (3.17)

Pr = r, P θ = π − θ, Pφ = π + φ, (3.18)

and

P t = t, P �p =− �p, P ��= ��. (3.19)

It is assigned the multiplicative quantum number “parity” π by

PΨ = πΨ. (3.20)
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Subsequent execution of two parity operations leads back to the original system

P 2Ψ = Ψ, (3.21)

thus the eigenvalue of the parity operation is

π =±1. (3.22)

The system behaves under parity conservation either “parity-even” (e) or “parity-
odd” (o). The P operation transforms a (unitary) operator appropriately:

PUe,oP
−1 =±Ue,o. (3.23)

For transition-matrix elements thus

〈α|Ue,o|β〉
{ �= 0,

= 0,
if α and β have

{
equal
different

parity. (3.24)

Correspondingly for eigenstates with well-defined parity (i.e. if parity conserva-
tion holds) the expectation value of a parity-odd operator must vanish. An example
are pseudo-scalars like the helicity (longitudinal polarization) 〈σ̂ �p〉:

〈α±|σ̂ �p|α±〉 = 0. (3.25)

3.2.6 Nuclear Reactions Under Parity Conservation

Parity appears in nuclear reactions in two instances:

• Every particle has an intrinsic parity. If the nucleons are assigned positive par-
ity the parities of all other particles are fixed via connecting nuclear reactions
(example: From the reaction np→ dπ—together with isospin conservation—the
negative parity of the pions results).

• Reaction theory shows that the parity behavior of the spherical harmonics

PYm
� (θ,φ)= (−)�Ym

� (θ,φ) (3.26)

determines the parity of the relative motion

π = (−)�. (3.27)

Thus, for a nuclear reaction

πa · πA · (−)�in = πintermediate state = πb · πB · (−)�out . (3.28)

Figure 3.1 shows the effect of space reflection on nuclear reactions. Together
with angular-momentum conservation parity conservation restricts the number of
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Fig. 3.1 Effect of the parity
operation in a nuclear
reaction with spins

possible angular momentum channels and intermediate states in compound nuclear
reactions. For one well-defined intermediate state (resonance, compound state) with
fixed parity π the orbital angular momenta in the entrance exit channels thus are
either even or odd only, excluding the other possibility even if allowed by angular
momentum coupling.

The conservation of parity is considered valid for the strong interaction and
equally its complete violation in the weak interaction. This has numerous conse-
quences. On the one hand the description of nuclear reactions (especially of the
polarizations observables) is often substantially simplified because a number of ob-
servables vanish under parity conservation. For others there are at least restrictions
e.g. on the number of possible angular-momentum states. On the other hand, nuclear
reactions offer the possibility to find effects of parity violation by trying to measure
“forbidden” observables.

3.2.7 Nuclear Reactions Under Parity Violation

A wave function with “good” parity is either parity-even (e) or parity-odd (o).
A wave function of states of non-conserved parity is always “parity-mixed” with
a mixing parameter F with

Ψ = (1− F)1/2Ψe + F 1/2Ψo. (3.29)

An operator has non-vanishing expectation values for such mixed wave functions
only if its transformation behavior is parity-odd:
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Fig. 3.2 Measured values of
the longitudinal analyzing
power in pp scattering at
15 MeV (Los Alamos, Bonn),
45 MeV (SIN/PSI), and
800 MeV (ANL) in
comparison to predictions of
the standard model (DDH:
Desplanques, Donoghue, and
Holstein [DES80])

〈Ψ |U |Ψ 〉 = (1− F)1/2[〈Ψe|U |Ψe〉 + 〈Ψo|U |Ψo〉
]+ 2F 1/2 · 〈Ψe|U |Ψo〉

= 2F 1/2 · 〈Ψe|U |Ψo〉. (3.30)

A longitudinal polarization or analyzing power is such an observable (this is dis-
cussed in detail in Chaps. 5 and 6). More precisely: The axis of quantization ŷ of
the spins in nuclear reactions with polarized particles is given as usual by

ŷ ≡ n̂= �kin × �kout

|�kin × �kout|
, (3.31)

where �kin ≡ ẑ and �kout designate (with p = �k) the momenta of the incident or
outgoing particles. It is normal to the scattering plane, spanned by ẑ and �kout, and is
the only component invariant under the P operation.

The two other components (along x and z axes) of the polarization or analyzing
power in x̂ and ẑ directions must vanish under parity conservation or can be non-
vanishing under parity violation, see also Sect. 6.5.

Thus we have observables Pz or Az that are sensitive to just such a violation. The
longitudinal analyzing power Az has been investigated especially for pp scattering
at several energies. The magnitude of the parity-violating effect caused by the weak
nuclear interaction on the cross section is on the order-of-magnitude 1 · 10−7 of the
superimposed effects of the strong interaction. In order to measure it with sufficient
statistics an absolute precision of better than 1 · 10−8 and very small systematic
errors are necessary. Figure 3.2 shows the results of the experiments, which prove a
clear parity violation in agreement with the standard model.

The study of [DES80] has been updated by a recent survey in [RAM06]. A com-
prehensive study of the status of hadronic parity violation and future developments
of the field (especially in the framework of effective field theory) was published
recently, see [HOL09].
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3.3 Isospin in Nuclear Reactions

The concept of isospin (and its conservation) dates back to Heisenberg (1932) and
was suggested by the similarity of the cross sections (more precisely: of the scatter-
ing lengths (see below) derived from the low-energy cross sections) in the pp (after
subtraction of the direct Coulomb effects), the np, and the nn interactions. Later
additional similarities in other observables e.g. the magnetic form factors of the nu-
cleons were found. Iso-multiplets in mirror nuclei with (assumed) identical nuclear
structure differ approximately only in their Coulomb energies. Small remaining dif-
ferences may be attributed to non-electromagnetic effects due to differences in quark
masses (Nolen-Schiffer anomaly). In particle physics iso-multiplets play an impor-
tant role, also because there the Coulomb-energy differences are small compared
to the total energy. For further reading see e.g. Refs. [FOX66, TEM67, AND69],
and [WIL69].

3.3.1 Formalism

Formally the isospin can be treated like the spin. One defines for the hadronic in-
teraction isospin operators, which are vectors with the usual commutation relations,
ladder operators, isospin coupling, isospin substates etc. The details of the formal-
ism for spin polarization that are in part also applicable here are set forth in Chap. 5.
The pertinent symmetry transformations are rotations in isospin space. Isospin con-
servation means invariance under rotations in the three-dimensional isospin space,
i.e.

U= eiθ �nT/� (3.32)

with det U= 1. Under the strong interaction the length
√

T (T + 1) of the vector T
under rotations remains constant (it is a scalar in T space). In the electromagnetic
interaction the T multiplets are split into 2T + 1 components that correspond to
different charge states with

Q= T3 + Y/2, (3.33)

the Nishijima relation introduced by M . Gell-Mann, with Y the hypercharge; for
nuclei Y = A = B , the baryon number. Thus T in the electromagnetic interaction
is not a conservation quantity. In the strong interaction the assumption of a conser-
vation of T is suggestive because of the close agreement in the properties of the
members of iso-multiplets. A closer look shows, however, that in reality isospin
symmetry is broken to an order-of-magnitude of about 1 %. The third component of
T , T3, because of charge conservation, remains a perfect conservation quantity (it
formally has the index 3, not z as with spin, because isospin has no similar mean-
ing in real space). In nuclear physics the nucleon, which is a two-state system is
assigned the isospin t = 1/2, the proton the “UP” projection t3 = +1/2, and the
neutron “DOWN” projection t3 = −1/2, see Fig. 3.3. For composite systems the
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Fig. 3.3 Breaking of the
isospin symmetry by the
electromagnetic interaction

Table 3.2 Allowed
partial-wave states of the
two-nucleon systems

Isospin T = 0 T = 1

channel spin S = 0 S = 1 S = 0 S = 1

L= 0 – 3S1(d) 1S0(d
∗) –

L= 1 1P1 – – 3P0,1,2

L= 2 – 3D1,2,3
1D2 –

total isospin is the vector sum of the component isospins, for the projections the
scalar sums:

T=
A∑

i=1

t(i); T3 =
A∑

i=1

t
(i)
3 , (3.34)

and thus for nuclei: T3 = −1/2(N − Z) and Tmin = 0 for even A, Tmin = 1/2 for
odd A, Tmax =A/2.

Formally, also under the assumption of isospin conservation the generalization of
the Pauli principle is possible by including, besides space and spin, also the isospin.
A fermion state is then described by a wave function, which is an antisymmetrized
product-wave function of space, spin, and isospin wave functions. For the nucleon-
nucleon system e.g. every other of the—in principle possible—two-nucleon states
is excluded, as shown in Table 3.2.

Under isospin conservation e.g. the transition from the “normal” (bound) triplet
deuteron to the (unbound) singlet deuteron in the pn final-state interaction of the
breakup reaction

p+ d→ p+ (n+ p)1S0=d∗ (3.35)

is strictly forbidden (the singlet deuteron d∗ is a slightly unbound state of the pn

system with antiparallel nucleon spins that appears only in pn scattering, see also
Tables 3.2 and 3.3 and Chap. 9). However, experimental indications for this tran-
sition occurring have been found [GAI88, NIE92], which points to the isospin not
being completely conserved, i.e. its conservation would be weakly violated. In fact,
in the electromagnetic interaction the isospin is conserved trivially, which incited
the question whether the (weak) observed isospin breaking is caused by influences
of the Coulomb force or is a more fundamental feature of the strong interaction.
Today the latter is the accepted point of view.
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3.3.2 Isospin as Conserved Quantity

The question of isospin conservation (or: violation) reaches far beyond the pure
formalism. At first sight the behavior of certain reactions seemed to prove isospin
conservation (if Coulomb effects are taken into account). Examples are:

• The branching ratios of some reactions may be to a large extent explained using
isospin coupling and applying Clebsch-Gordan (3j) coefficients (see Sect. 22.3).
This implies that the transition-matrix element does not depend significantly on
the third isospin component:

p+ d→ 3He+ π0(1) is to be compared with p+ d→ 3H+ π+(2). (3.36)

With the isospin CG coefficients the ratio of the cross sections for the two
branches is calculated in agreement with the experiments is

(dσ/dΩ)1

(dσ/dΩ)2
=
( 〈 1

2
1
2 10| 12 1

2 〉
〈 1

2 − 1
2 11| 12 1

2 〉
)2

=
(−√1/3√

2/3

)2

= 1 : 2. (3.37)

Other examples are pion-nucleon scattering or reactions such as pp→ dπ+ and
pn→ dπ0.

• Resonances in isospin-forbidden compound processes show much smaller (by
orders-of-magnitude) formation and decay probabilities, expressed by their total
widths Γ , than comparable allowed resonance transitions. An example is the se-
ries of narrow resonances in the elastic protons scattering from light nuclei such
as 12C, 24Mg and others, for which the entrance channel has the isospin T = 1/2,
the resonances, however, belong to states with isospin T = 3/2, T = 5/2:

p+ 12C→ 13N∗(Ep = 14.231 MeV)→ p+ 12C. (3.38)

This resonance has a width of only 1.1 keV, whereas comparable neighbor-
ing resonances have widths of about 100 keV. (This resonance—because of its
sharpness—has widely been used for energy calibration of accelerators.) Fig-
ure 3.4 shows a measurement of excitation functions across this narrow isospin-
forbidden resonance in comparison with a typical nearby much wider isospin-
allowed state.

• In 1967 the Barshay-Temmer Theorem was formulated [BAR67] that allows the
identification of members of isospin multiplets (isobaric analogs): In a nuclear
reaction a + A→ b + b′ where b and b′ are exactly connected by a rotation in
isospace and where a or A have isospin T = 0, the differential cross section of the
reaction will be exactly symmetric about 90◦ in the c.m. system, independently of
the reaction mechanism. This excludes reactions, in which such a symmetry is
imposed by other mechanisms such as CN reactions (see Chap. 8 and Sect. 11.5),
or identical particles (see Sect. 3.4). A typical reaction (among others) for this
test has been d + 4He↔ 3H+ 3He.
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Fig. 3.4 Excitation functions of the 12C + p scattering across the T = 1/2 resonance (left top:
elastic channel, left bottom: p1 inelastic channel) and the T = 3/2 resonance (right; at different lab.
angles). The solid lines are Breit-Wigner fits including interference with a background amplitude
and an experimental energy spread. This experimental resolution (mainly the energy spread of the
incident proton beam from the tandem Van-de-Graaff accelerator) is larger (about 1.7 keV) than
the true resonance width (1.1 keV). This resonance has been used to calibrate the tandem energy
(the value of ER is known from spectrograph measurements)

3.3.3 Isospin Breaking

The non-vanishing of the width of the T = 3/2 resonance in 13N is an indication
and actually a measure of the incomplete isospin conservation (or: slight isospin
violation).

Isobaric-Analog resonances (IAR) are another good example for partial isospin
conservation and, at the same token, weak isospin breaking. In heavy nuclei no
isospin conservation had been expected due to the strength of the Coulomb interac-
tion. The appearance of strong IAR, however, pointed to a relatively good isospin
purity of the systems, which is largely conserved by the rapidity of the decay at the
high excitation energies, preventing strong mixing of states. The doorway mecha-
nism, through which the IAR with isospin T > = T0+1/2 decay into (and mix with)
the normal high level-density compound states with T < = T0 − 1/2 before they
decay into the exit channel implies this mixture of states with different isospins.
The structure of lighter nuclei also shows examples of isospin conservation (isobar
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multiplets like 3H and 3He), where, however, after careful Coulomb corrections, a
remainder of isospin breaking is left unexplained (Nolen-Schiffer anomaly).

Only in 2003 a cross section, small, but finite, of the isospin-forbidden reaction

d + d→ 4He+ π0 (3.39)

was measured, which constitutes a clear breaking of charge symmetry [STE03,
MIL06].

Our present understanding of the nucleon-nucleon interaction—first formulated
by Hideki Yukawa in 1935 [YUK35] for a hypothetical exchange particle, first be-
lieved to be the muon μ, later identified with the pion π—is that the long- and
medium-range parts of the interaction are mediated by the exchange of (virtual)
mesons whereas the short-range behavior can probably only be described by the
QCD or Effective-Field Theories (EFT) derived from it. Thus, the following non-
trivial causes of isospin breaking are mainly:

• The mass difference of π0 and π±. On the more microscopic level of the QCD
this is caused by the (unexplained) mass difference between the up and down
quarks.

• The mixture of the two mesons ρ with T = 1 and ω with T = 0 in the meson
exchange between nucleons as well as the η− π0 mixing.

Henley and Miller [HEN79] published a detailed classification of the different pos-
sibilities of isospin breaking or mixing (Class I to Class IV) shown in Table 3.3.
In the nucleon-nucleon system the effects of charge independence (equality of the
observables of the np- and the pp/nn systems) and charge symmetry (equality of
the observables of the nn- and of the pp systems) or their breaking are the most in-
teresting. The respective scattering lengths show in a very sensitive way (by a “mag-
nifying glass” effect of about 20 % an isospin violation in the potential of about 1 %
is detected) the breaking of charge independence while a small charge-symmetry
breaking was proved recently in difficult intermediate-energy experiments (TRI-
UMF, IUCF). In nuclear physics isospin is a weakly broken symmetry. The status
of charge-symmetry breaking and its relation to QCD around 2006 is summarized
in Ref. [MIL06].

3.4 Exchange Symmetry in Nuclear Reactions of Identical
Particles

In the scattering of identical particles a detector at the c.m. angle θ is unable to
distinguish whether it registers forward-scattered ejectiles under θ or, under the an-
gle π − θ , backward-emitted recoils. This is shown in Fig. 3.5. The formal scat-
tering theory (see below) shows that the angular distributions must be symmetric
around π/2 and therefore must be described by even-order Legendre polynomi-
als. Quantum-mechanically, in addition, it is to be expected that the forward- and
backward-scattered particle waves interfere. In this case no classical description of
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Table 3.3 Henley classification of isospin breaking in two-nucleon systems

Class Form of the iso potential Effects Example

I Isoscalar
V I

ij =A+B �τ(i) · �τ(j)

Charge Symmetry (CS)
Charge Independence (CI)
Rotation Invariance in Iso
Space

Valid in the strong int. in
first order nn= np = pp

II Iso Tensor
V II

ij = C[τ3(i)τ3(j)

− 1
3 �τ(i)�τ (j)]

CS, not CI
Invariance under Reflection in
the 1–2 plane of iso space

nn= np

np(T = 1)= np(T = 0)

np(T = 1) �= nn/pp

III Third Component Iso
Vector
V III

ij =D[τ3(i)+ τ3(j)]

no CS, no CI but Symmetry at
Interchange 1←→ 2

nn �= np

[V III
ij , T 2] ∝ [T3, T

2] = 0
no “mixing” acts not on np

IV V IV
ij =E[τ3(i)−

τ3(j)] + F [�τ(i)× �τ(j)]
no CS, no CI
Antisymmetry at Exchange
1←→ 2

Only for np [V IV
ij , T 2] �= 0

“Mixing” Transitions
3Lj ←→1 Lj

d←→ d∗
Origin: not Coulomb, but
md �=mu, ρ0 −ω−,
π0 − η-Mixing

Test: e.g., in np scattering:

�P(θ)≡ Pn(θ)− Pp(π − θ) �= 0?

�A(θ)≡An(θ)−Ap(π − θ) �= 0?

Fig. 3.5 Trajectories of
identical particles in the c.m.
system

the scattering process is possible. In addition, the details of the interference depend
on the spin structure of the interacting particles: identical bosons behave differ-
ently from identical fermions, and when the particles have spin �= 0 (i.e. always for
fermions) the spin states must be coupled and superimposed in the cross section
with their spin multiplicities as weighting factors. The following examples, which
can be tested experimentally will explain this.
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3.4.1 Identical Bosons with Spin I = 0

Here [
dσ/dΩ(θ)

]
B
= ∣∣f1(θ)+ f2(π − θ)

∣∣2. (3.40)

3.4.2 Identical Fermions with Spin I = 1/2

For the fermions the spin singlet cross section

[
dσ/dΩ(θ)

]
s
= ∣∣f1(θ)− f2(π − θ)

∣∣2 (3.41)

and the triplet cross section

[
dσ/dΩ(θ)

]
t
= ∣∣f1(θ)+ f2(π − θ)

∣∣2 (3.42)

in the total (integrated) cross section must be added incoherently, each weighted
with their spin multiplicities:

[
dσ/dΩ(θ)

]
F
= 1

4

∣∣f1(θ)+ f2(π − θ)
∣∣2 + 3

4

∣∣f1(θ)− f2(π − θ)
∣∣2. (3.43)

In these two cases the interference has opposite sign, which e.g. at θ = π/2 has
the consequence that in the case of two bosons there is an interference maximum, for
fermions a minimum. Under the special assumption that there is no spin-spin force
acting (fs = ft = f ), and with f (θ)= f (π − θ) one obtains for identical fermions
a decrease, for identical bosons an increase each by the factor 2 as compared to the
classical cross section.

For pure (Sub-)Coulomb scattering (meaning: Coulomb scattering at energies
below the Coulomb barrier) of identical particles the scattering amplitudes can be
calculated explicitly (i.e. also summed over partial waves) since we deal with the
Rutherford amplitude known from scattering theory, see Sect. 2.3.2:

(
dσ

dΩ

)
Coul
=
(

Z2e2

4E∞

)2{ 1

sin4 θ
2

+ 1

cos4 θ
2

+ 2(−1)2s cos[ηS ln tan2 θ
2 ]

(2s + 1) sin2 θ
2 cos2 θ

2

}
. (3.44)

In addition to the forward-scattering Rutherford cross section there is a correspond-
ing recoil Rutherford term plus an interference term between both. Figure 3.6 shows
this behavior (which is analogous to that of light in Young’s double-slit experiment,
but additionally shows the influence of spin and statistics).

3.5 Time-Reversal Invariance

The CPT symmetry is considered to be a very deeply founded principle of parti-
cle physics (but not, however, exempt from experimental scrutiny). Via the CPT
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Fig. 3.6 Experimental c.m. angular distributions of Coulomb scattering of two identical bosons
(12C) and fermions (13C) as well as of two non-identical particles of nearly equal masses and
theoretical cross sections at Elab = 7 MeV. The angular distribution for the non-identical particles
is obtained when the spectra of the forward and backward scattered particles cannot be separated
by the detector, which is the case for (nearly) equal masses. Otherwise one would obtain a typical
Rutherford distribution for each particle separately. The data were measured by students of an
advanced lab. course at IKP Cologne in 2003

theorem the proven violation of CP invariance in the weak interaction of the
K0 − K̄0 system made the validity of time-reversal invariance questionable. A di-
rect and independent evidence for time-reversal asymmetry was found only recently
[LEE12, BER12] by comparing “in” and “out” channels in the entangled B0B̄0 sys-
tem and found to be in agreement with the amount of CP violation thus confirming
also the validity of the CPT theorem.

Compared to other invariances the time-reversal invariance is a special case.
There is no conserved quantity (and quantum number), because the operator T of
time reversal is anti-linear and unitary = anti-unitary. It acts as

• T t =−t ,
• T �r = �r ,
• T �p =− �p,
• T �L=−�L,
• T �S =−�S.
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Fig. 3.7 Effect of the
time-reversal operation on
nuclear reactions with spins

The time-reversal operation does not leave the (time-dependent) Schrödinger equa-
tion form-invariant:

T : −∂Ψ

∂t
= �

2

2μ
∇2Ψ →− ∂Ψ

∂(−t)
= �

2

2μ
∇2Ψ = ∂Ψ

∂t
. (3.45)

The form-invariance under the T operation can only be restituted by the addi-
tional operation of complex conjugation (operator CC):

T = T0 ·CC. (3.46)

Thus:

T Ψ (t)= Ψ ∗(−t). (3.47)

The wave function of free particles is transformed into its complex conjugate by the
T operation

T : ei(kr−Et/�)→ e−i(kr−Et/�). (3.48)

Applied to motions the operator T produces an inversion of motion. In nuclear
reactions it interchanges entrance and exit channels, incoming and outgoing mo-
menta as well as spins. Time-reversal invariance is of principal and also practical
importance. In principle its validity can be tested also in nuclear reactions. Its va-
lidity simplifies the description of nuclear reactions, especially for the polarization
observables of particles with spin. Figure 3.7 shows the effect of the time-reversal
operation on a nuclear reaction with spins.

3.5.1 Time Reversal, Reciprocity, and Detailed Balance

In the framework of perturbation theory reciprocity allows to find relations between
observables of forward (designated by→) versus backward (←) reactions. Fermi’s
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Fig. 3.8 Cross sections of
the forward and backward
reactions 24Mg(α,p)27Al,
measured at the same c.m.
energies and angles. The large
picture shows the result of the
first such experiment to test
detailed balance, the inset an
improved later measurement
at some other energies and
thus also different reaction
mechanism. Adapted from
Refs. [VWI68, BLA83]

Golden Rule connects both via the transition matrix element:
(

dσ

dΩ

)
→
= 2π

�

∣∣〈Ψout|Hif|Ψin〉
∣∣2ρ→, (3.49)

(
dσ

dΩ

)
←
= 2π

�

∣∣〈Ψout|Hif|Ψin〉
∣∣2ρ←. (3.50)

Under time-reversal invariance for spinless particles Hif =Hfi, from which follows
the

Principle of Detailed Balance The cross sections of forward and backward reac-
tions are—except for phase-space factors—identical. More precisely:

( dσ
dΩ

)→
( dσ
dΩ

)←
= (2sa + 1)(2sA + 1)

(2sb + 1)(2sB + 1)
· kin

kout
. (3.51)

This relation is of practical importance because it can—via the reverse reaction—
provide observables not directly measurable e.g. because no stable targets exist
(such as radioactive targets). The relation can be used to test time-reversal invari-
ance. Its validity was investigated in measurements of several different reactions
(e.g. 24Mg(α,p)27Al [RIC66, VWI68]) and their inverse reactions, and in differ-
ent energy ranges (where partly different reaction mechanisms dominate the cross
sections) by trying to find significant deviations from detailed balance. The results
were a confirmation of the non-violation of time-reversal invariance with a preci-
sion (i.e. the upper limit of a possible violation) of ≈ 2 · 10−3 (for a discussion
about the determination of the significance limit of such a “null” experiment see
e.g. Refs. [HAR86, HAR90, KLE74]). The precision reached, however, was in all
cases much too low to show any effects from the time-reversal non-invariance stem-
ming from the known CP violation in conjunction with a valid CPT theorem. Fig-
ure 3.8 shows the results of two different detailed-balance experiments.
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For reactions with polarized particles time-reversal invariance predicts relations
between polarization observables of the forward (designated by→) and backward
(←) reaction:

(Ay)→ = (Py)←. (3.52)

The vector analyzing power of the forward reaction with polarized particles in the
entrance channel is equal to the vector polarization that is produced with unpolarized
particles in the exit channel of the backward reaction. However, the polarization
experiments performed to look for time-reversal violations showed less significance
than the cross-section measurements.

For elastic scattering, for which forward and backward reactions are the same
this means that in a double-scattering experiment, in which the same reaction is
performed consecutively at the same relative energy and the same c.m. angle the an-
alyzing power (identical to the outgoing polarization) can be determined absolutely
(except for the sign) via the relation

(
dσ

dΩ

)
pol
=
(

dσ

dΩ

)
unpol

(
1+A2

y

)
, (3.53)

see also Chap. 5.

3.5.2 Other Nuclear Observables of Possible Time Reversal
Violation TRV

Only briefly we mention that time-reversal invariance forbids the existence of static
nuclear moments: odd electric moments (E1, E3, . . . ), and even magnetic moments
(M0, M2, . . . ). The standard model predicts TRV by an electric dipole moment of
10−33 < dn < 10−31 e · cm. A crude estimate from observations would give

dn ≈ e · rrms︸︷︷︸
10−13 cm

·FPV︸︷︷︸
10−7

·P T RV︸ ︷︷ ︸
10−3

≤ 10−23 e · cm (3.54)

where F PV are the measured degree of parity violation and P TRV the minimum
possible TRV from CP non-invariance and with CPT validity.

Novel methods for the determination of d of protons, deuterons, and other light
nuclei using storage-ring accelerators and polarization technology have been pro-
posed at BNL Brookhaven and COSY/Jülich, see e.g. Ref. [PRE13]. The basic idea
is to have a perturbation by the interaction of a radial electric field with the dipole
moment along the rings build up over many revolutions. The injected longitudi-
nally polarized ions would gain a transverse polarization component that could be
measured with polarimeters of high precision and high sensitivity. Several designs
(purely electric, purely magnetic, and mixed electric/magnetic) are being discussed.
The hope is to increase the sensitivity from the present limit of < 2.9 · 10−26 e · cm
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for the neutron and < 7.9 · 10−25 e · cm for the proton to ≈ 1 · 10−29 e · cm. This
is still far away from the predictions of the standard model but may be in range of
some supersymmetric (SUSY) models (10−29 < dn < 10−24 e · cm).

Recently, two nuclides with static octupole (E3) deformation (“pear-shape”) have
been identified, 220Rn and 224Ra, using γ spectroscopy after Coulomb excitation of
radioactive beams in the isotope separator REX-ISOLDE (CERN), and the multi-
detector array MINIBALL [GAF13], see also Sect. 17.7 and Fig. 17.11.

3.6 Exercises

3.1. Calculate the lab. threshold energy for the production of antiprotons in the
collision of protons on protons. Which exit channels are possible?

3.2. Why—in pp reactions—are strange particles always produced in pairs (“asso-
ciated production”)? Find the lowest-energy example.

3.3. List a number of (parity-non-invariant) pseudo-scalar observables.
3.4. Prove the forbiddenness of static electric dipole moments in nuclei by time-

reversal invariance. If d(n) �= 0: Why must parity invariance then be violated
too?

3.5. Which reactions are possible/forbidden? Why?

• p+ d→ p+ p+ n at Ep,lab = 1.0 MeV
• p+ p→ p̄+ p

• d + d→ 4He+ γ

• α + 12C→ d + 14N (Jπ = 1+ and Jπ = 0+)
• γ + p→ p+ p+ p̄.

3.6. Construct a table of the allowed states of the d + d system.
3.7. Show explicitly that the expectation value of a spinor �σ is reversed under the

time-reversal operation, whereas the helicity 〈p̂ · �σ 〉 is invariant.
3.8. In Fig. 3.8 the cross sections of the reaction 27Al(p,α)24Mg and its inverse

are plotted as functions of their respective lab. energies such that they have the
same c.m. energies and c.m. angles. Verify the relations between these energies
and angles.
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Chapter 4
Cross Sections

4.1 General Appearance of Cross Sections

The coarse behavior of low-energy cross sections, i.e. that without consideration of
details of the nuclear interaction, depends on a small number of conditions: whether
we deal with neutral or charged particles, and whether the Q-value of the reaction
discussed is such that the reaction is elastic (Q= 0), endo- (Q < 0), or exothermic
(Q > 0). Especially exothermic reactions with neutrons have no Coulomb barrier
to surmount as well as no energetic threshold. Thus, they can be measured down to
energies approaching 0. In this case the neutrons have to be produced in a nuclear
reactor, and the methods to obtain beams with good geometry and well-defined en-
ergies are different from those for charged particles, see Part II of this text.

In this low-energy case one can understand the cross sections without reference
to internal degrees of freedom of the nuclear interaction. We assume validity of
Fermi’s Golden Rule for a two-particle reaction a +A→ b+ B and particles with
spins I :

dσ

dΩ
= (2Ib + 1)(2IB + 1)

(2π�2)2
μiμf

kf

ki

∣∣H ′if
∣∣2 (4.1)

where i and f designate the initial (or incident) and the final (or outgoing) channels,
the μi , μf , ki , and kf the reduced masses and momenta in these channels. H ′if
is the transition matrix element of the interaction causing the reaction, treated as
a small perturbation. Application of this rule results in the characteristics (for s

waves), described below. The general behavior of low-energy cross sections has
been discussed in Refs. [MAR70, SAT90], see also, especially in connection with
the astrophysical S-factor, Chap. 14 and [ROL88].

4.1.1 Neutral Particles—Elastic Scattering (n,n)

With Q = 0;vi = vf and Hif = const, the (angle-integrated) cross section is con-
stant with energy. One of many examples is shown in Fig. 4.1.
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Fig. 4.1 Excitation function
of elastic neutron scattering
from 16O at low energies. The
wide central region is
constant with energy. The
regions below and above are
dominated by neutron
diffraction (coherent
scattering) and onset of
inelastic processes,
respectively. Adapted from
[NNDC]

Fig. 4.2 Excitation function
of non-elastic neutron
reactions (n, γ ), (n,n′) and
(n,2n) from 27Al at low
energies. The onset of the
inelastic reactions leads to an
≈ parabolic threshold
behavior. The regions below
the threshold shows the
E−1/2 behavior of n capture
and resonances. Adapted
from [NNDC]

4.1.2 Neutral Particles—Inelastic Neutron Scattering

The reaction (n,n′) is endothermic, i.e. Q < 0. Near the threshold (i.e. in a small
energy interval) with vi ≈ const follows:

σ ∝ vf =
√

2μf (Ei −Ethreshold), (4.2)

which corresponds to a parabolic increase of the cross sections starting from the
threshold energy. Figure 4.2 shows an example.
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Fig. 4.3 Excitation function
of a neutron capture reaction
(n, γ ) from 10B at low
energies. The very high cross
section makes this reaction
suitable for removing
neutrons e.g. in a nuclear
reactor. Adapted from
[NNDC]

Fig. 4.4 Excitation function
of the reaction 28Si(n,p)28Al
which has a negative
Q-value, therefore a
threshold, and an exponential
increase of σ because of the
exit-channel Gamow factor.
Adapted from [NNDC]

4.1.3 Neutral Particles—Exothermic Reactions with Thermal
Neutrons (n,γ ), (n,p), (n,f ) etc.

Typically Q≈ 1 MeV. Thus, vf ≈ const, and (see Fig. 4.3)

σ ∝ 1/vi ∝E−1/2. (4.3)

4.1.4 Neutral Incident Particles—Endothermic Reactions (Q < 0)
with Charged Exit Channel

For charged particles in the exit channel (typical reactions are (n,α), (n,p), . . .)
cross sections are dominated by the Gamow factor e−Gb , which is determined by the
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Fig. 4.5 Examples of two reactions in the astrophysical low-energy range showing the enormous
influence of the Coulomb barrier on the cross sections increasing over many decades. Nevertheless
such studies are important for obtaining reaction rates of reactions of nucleosynthesis and at the
same time difficult. The S-factors (one “total”, the other a “differential” S-factor) are a good way
to divide out the Coulomb behavior showing the essential nuclear features more clearly such as the
s-wave behavior that allows extrapolation to zero energy, or resonances. Adapted from [RED82]
(left) and [LOR79] (right)

Coulomb barrier. An energy dependence of the matrix elements H ′if enters here as a
penetrability. We thus obtain an integrated cross section that increases exponentially
starting from the threshold (Fig. 4.4).

4.1.5 Charged Particles in the Entrance and Exit Channels

The same applies here with the difference of having two Gamow factors and the
cross section going with ∝e−(Ga+Gb). This is similar for exothermic and endother-
mic reactions (except for the threshold behavior). Figure 4.5 shows two examples
of such reactions.

4.1.6 Threshold Effects

When the increasing incident energy passes thresholds of channels opening up suc-
cessively this shows up as an increase of the cross section at each threshold. A typi-
cal example is the (n,f ) reaction (f = fission) with increasing number n of emitted
neutrons (n= 0,1,2, . . .).

If one considers only one channel, e.g. the elastic channel, it can be ob-
served that whenever a new channel opens up a marked decrease of the cross
section is visible. This may be explained by the conservation of particle flux
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Fig. 4.6 Data of elastic and inelastic scattering of protons from protons (with error bars) as func-
tions of the lab. momentum of the incident proton. A few thresholds for the production of real
particles such as the pion are shown. The inelasticity begins at the pion production threshold and
causes a strong decrease of the purely elastic scattering cross section together with a weak thresh-
old effect (cusp) and an increase of the total cross section. Adapted from [NNDC]

(= probability conservation), which theoretically is a consequence of the unitar-
ity of the scattering matrix. An example is the pp cross section at and around the
pion-production threshold.

Occasionally the cross sections around that energy show some resonance-like
excursions (cusps), which are not resonances in the true sense as discussed here, but
can be described with the unitarity of the S-matrix. The shape of these cusps has
nothing to do with the Breit-Wigner shape of regular resonances. Figure 4.6 shows
these effects at the example of pp scattering.

4.1.7 Other Phenomena

The features of s-wave cross sections discussed so far were determined solely by the
phase space (a constant matrix element was assumed) or showed a simple transmis-
sion behavior (Coulomb penetrability). Similarly the penetrability for partial waves
with � > 0 could be parametrized. In nuclear astrophysics this basic behavior is
often “divided out” by discussing, instead of the cross section, the astrophysical
S function or S factor, see Chap. 14.

Thus, any “special” energy dependence of the matrix elements becomes more
clearly visible. Especially this is true for resonances that are eigenstates of the
Hamilton operator of compound systems and measure the lifetime of these states by
their widths. Examples are the low-energy neutron resonances of uranium isotopes,
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Fig. 4.7 Integrated cross
section of the interaction of
neutrons with 235U. This
isotope undergoes fission by
thermal neutrons. The total
cross section is a sum of
capture and fission reactions.
The number of single
compound-nucleus
resonances increases
exponentially with increasing
energy where they finally
overlap and appear averaged.
Adapted from [NNDC]

Fig. 4.8 Integrated cross
section of the interaction of
neutrons with 238U. This
isotope undergoes fission
only by fast neutrons for
which there is a threshold
energy. The total cross section
at lower energies is purely
elastic scattering, at higher
energies a sum of elastic and
fission reactions. Again the
density of the number of
single C.N. resonances
increases with energy.
Adapted from [NNDC]

which play such an important role in nuclear reactors, see Fig. 4.8 and charged-
particle resonances with large cross sections playing a role in nucleosynthesis. An
example is the reaction 18O(p,α0)

15N [LOR79, ROL88], see Fig. 4.5. These neu-
tron resonances show different features for the two most important target isotopes
235U and 238U: 235U is fissionable by thermal neutrons, thus shows the low-energy
behavior typical for capture reactions with 1/v, see Fig. 4.7. 238U needs fast neu-
trons for fission, i.e. the fission cross section is �=0 only above a threshold of about
1.5 MeV, below which elastic scattering dominates the cross section (constant with
energy). In addition, both reactions show strong resonances in an intermediate en-
ergy range, which corresponds to a strong energy dependence of the matrix elements
of the Hamiltonian due to excitation of compound-nuclear states.
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Fig. 4.9 Scattering
quantum-mechanically

4.2 Formal Description of Nuclear Reactions

The formal description of nuclear reactions aims at a clean separation of the dy-
namics from geometry- and angular-momentum dependences of the observables. In
the study and exploration of nuclear forces it is the dynamical part that is of spe-
cial interest. In order to make the comparison between theoretical predictions and
experimental data easy and meaningful a suitable interface between both has to be
defined. This “matching” could be on the level of the observables directly or of the
matrix elements derived from some additional data reduction (e.g. via a phase-shift
analysis). The latter is advantageous because the wealth of different data (especially
polarization observables) is reduced to the common essential dynamical quantities,
after separation of non-dynamical parameters (kinematics, geometry, and angular-
momentum algebra, see Chap. 5).

4.2.1 Wave Function and Scattering Amplitude

The scattering is described by stationary wave functions for asymptotic states.
The incident wave is prepared as a plane wave at z→−∞, t →−∞. The scat-
tered wave is an outgoing spherical wave, which is asymptotically described at
r→∞, t→∞. This situation that also corresponds to the usual experimental setup
is shown in Fig. 4.9. The modification of the incident wave by the scattering process
is described by the scattering amplitude f (θ,φ). The total wave function

Ψ → eikinz + f (θ,φ)
eikoutr

r
(4.4)

is the solution of either a Schrödinger equation with boundary conditions or a corre-
sponding integral equation (the Lippmann-Schwinger equation, which is normally
formulated as to contain the boundary conditions automatically). These conditions
are taken into account by imposing them on the wave function. If there is a scatter-
ing potential �=0 the wave function in the external region i.e. that of the free particles
is matched at a suitable point, often at the nuclear surface r = R or the “edge” of
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the potential, to the wave function in the nuclear interior i.e. that influenced by the
potential. We require:

• The wave functions and their derivatives must be continuous at r =R.
• For bound states Ψ → 0 for r→∞.
• For scattering states Ψ approaches the asymptotic solution for a free particle with

r→∞.
• We require Ψ → 0 for r→ 0 in order to avoid the singularity at the origin.

4.2.2 Scattering Amplitude and Cross Section

We start from the general definition of the cross section

dσ = �joutd �A
| �jin|

(4.5)

and use a classical continuity equation for the particle flux expressed by �j :

�j = ρ · �v. (4.6)

Quantum mechanically

�j = i�

2μ

[
Ψ ∗ �∇Ψ −Ψ �∇Ψ ∗

]
and ρ = Ψ Ψ ∗, (4.7)

which provides a connection to the wave functions that may be solutions of the
Schrödinger equation. With

Ψin ≡Φ = aeikinz and Ψout = af (θ,φ)
eikoutr

r
(4.8)

we obtain

�jin = �/2μ|a|22�kin = |a|2�vin (4.9)

�jout = �/2μ|a|2∣∣f (θ,φ)
∣∣2 kout

r2
= |a|2�vout

|f (θ,φ)|2
r2

. (4.10)

With the outgoing flux �joutd �A = �vout|a|2|f (θ,φ)|2dA/r2 through the area dA =
r2dΩ we get

dσ = �joutd �A
| �jin|

= vout|a|2
∣∣f (θ,φ)

∣∣2dΩ

vin|a|2 , (4.11)

and
dσ

dΩ
= kout

kin

∣∣f (θ,φ)
∣∣2 = kout

kin
f · f ∗, (4.12)
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and

dσ

dΩ
= ∣∣f (θ,φ)

∣∣2 for elastic scattering. (4.13)

Please note (for more detail see Chap. 5):

• For particles with spin the scattering amplitude has to be replaced by a matrix
describing the transitions between the different spin-substates of the entrance and
exit channels (M matrix). The complex square, the absolute value of f · f ∗, is
replaced by taking the trace of this matrix: dσ/dΩ ∝ Tr(MM†).

• In addition to the (unpolarized) cross section there are many other (polariza-
tion) observables such as polarization, analyzing power, polarization-transfer
coefficients, spin-correlation coefficients etc. For many more detailed investi-
gations in nuclear physics the study of polarization observables has been and
still is important, in some cases indispensable. More detailed description of po-
larization effects in nuclear reactions and their measurement may be found in
Refs. [HGS12, NUR13].

4.2.3 Schrödinger Equation

For the application to nuclear reactions stationary solutions are required, i.e. the
time-independent Schrödinger equation is to be used. Corresponding to the geome-
try of the scattering problem the use of spherical polar coordinates is useful. For a
central potential V (�r) the equation reads

− �
2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2

]
Ψ (�r)

+ V (�r)Ψ (�r)=EΨ (�r), (4.14)

where Ψ (�r) is an abbreviation for Ψ
(+)

�ki
(�r), which corresponds to the stationary

scattering wave function. The angle-dependent part of the Hamilton operator may
be expressed by the angular-momentum operator

L2 = L2
x +L2

y +L2
z =−�2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
. (4.15)

Eigenvalues and eigenfunctions of L2 and Lz are given by the eigenvalue equations:

L2Y�m(θ,φ)= �(�+ 1)�2Y�m(θ,φ), (4.16)

LzY�m(θ,φ)=m�Y�m(θ,φ). (4.17)
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The well-known commutation relations apply here. With these the Hamiltonian may
be written

H =− �
2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

�2r2

]
+ V (r), (4.18)

i.e. the substitution leads to the appearance of a term with L2, which may be added
to the potential term, providing the centrifugal potential. Because of [H,L2] and
[H,Lz] = 0 one searches for the common eigenfunctions to H,L2 and Lz for a
product Ansatz, which corresponds to a separation of radial and angular parts of the
wave function and is at the same time a partial-wave expansion

Ψ (�r)=
∞∑

�=0

�∑
m=−�

C�m(k)R�m(kr)Y�m(θ,φ). (4.19)

The separated radial equation (for m = 0 we have azimuthal independence of the
scattering problem) is a Bessel differential equation

[
d2

dr2
+ k2 − �(�+ 1)

r2
−U(r)

]
u�(k, r)= 0, (4.20)

with the substitutions u�(k, r)= rR�(k, r) and U(r)= 2μV (r)/�2.
The solutions of this equation for free particles (U = 0) are

•
j�(kr)→r→∞= sin(kr − �π/2)

kr
≡ ei[kr−�π/2] − e−i[kr−�π/2]

2ikr
. (4.21)

These Spherical Bessel Functions are regular for r→ 0.
•

n�(kr)→r→∞
cos(kr − �π/2)

kr
≡ ei[kr−�π/2] − e−i[kr−�π/2]

−2kr
. (4.22)

These Spherical Neumann Functions are irregular for r→ 0. Figure 4.10 shows
the few lowest-order Spherical Bessel and Neumann Functions (also: Bessel
Functions of the second kind or Weber Functions).

• Solutions are also the linear combinations

h
(1,2)
� (kr)= j�(kr)± in�(kr) (4.23)

(Hankel Functions).
For bound states, because of the behavior at the origin, only the solution j�(kr)

can be used.

The scattering from a potential shifts the phase of the scattering wave by δ�:
The wave numbers in free space (kfree =

√
2μE/�2) and inside the potential region

(kpot =
√

2μ(E − V )/�2) are different. After passage of a wave through a potential
“layer” of thickness d the phase of the transmitted wave has changed relative to that
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Fig. 4.10 The behavior of the lowest-order Spherical Bessel and Neumann Functions j�(kr) and
n�(kr) as functions of x = kr

of the free wave by δ = (kpot − kfree)d . In classical optics terms like phase shift,
refractive index and optical path length have a similar origin and meaning.

In order to also expand the total wave function into partial waves a similar ex-
pansion of the plane incident wave eikz is needed. This is given by the mathematical
identity (Rayleigh)

eikz =
∞∑

�=0

(2�+ 1)i�j�(kr)P�(cos θ) (4.24)

where the j�(kr) are the Bessel Functions of the first kind and the P�(cos θ) the
Legendre Polynomials. The lowest-order Legendre Polynomials are depicted in
Fig. 4.11. Basically, this expansion is the angular-momentum representation of the
wave function.

Thus the total wave function becomes

Ψtot →∝
∞∑

�=0

(2�+1)i�
ei[kr−�π/2] − e−i[kr−�π/2]

2ikr
P�(cos θ)+f (θ,φ)

eikr

r
. (4.25)

On the other hand this total wave function must also satisfy a simple partial-wave
expansion—but with a phase shift caused by the potential.

δ = (kpot − kfree) · d (4.26)

with

kfree =
√

2μE

�2
and kpot =

√
2μ(E − V )

�2
. (4.27)
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Fig. 4.11 The four
lowest-order Legendre
Polynomials PL(cos θ),
which determine the angular
distributions of unpolarized
cross sections, see also
Chaps. 5 and 7. Only the left
half of the picture is relevant
for angular distributions, θ

being a polar angle

Fig. 4.12 Illustration (in one
dimension) of the action of a
potential region on the
wavelength (or wave
number k) of a wave, causing
a phase shift δ relative to the
free wave. The sign of the
phase shift δ depends on
whether the potential is
attractive (δ < 0) or repulsive
(δ > 0)

The simplified Fig. 4.12 illustrates the connection between the potential V and the
phase shift of a wave.

Ψtot →
∞∑

�=0

C�

1

2ikr

[
ei(kr−�π/2+δ�) − e−i(kr−�π/2+δ�)

]
P�(cos θ). (4.28)
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By comparing coefficients in the incoming and the outgoing waves in both expan-
sions one obtains on the one hand a normalization:

C�(k)= (2�+ 1)i�eiδ� , (4.29)

and on the other an expression for f (θ)

∑
�

(2�+ 1)i�eiδ�
1

2ikr
P�(cos θ)ei(kr−�π/2+δ�)

=
∑

�

(2�+ 1)i�
1

2ikr
ei(kr−�π/2)P�(cos θ)+ f (θ,φ)

eikr

r
, (4.30)

from which follows

f (θ) = i

2k

∞∑
�=0

(2�+ 1)
(
1− e2iδ�

)
P�(cos θ)

= 1

k

∞∑
�=0

(2�+ 1) sin δ�e
iδ�P�(cos θ). (4.31)

The quantity η� = exp(2iδ�) is the scattering function and identical with the sim-
plest form of the general scattering matrix S�(k). This function contains the dy-
namics of the interaction and—via the scattering amplitude (or more generally: via
the transfer (T ) matrix or, for particles with spin, the M matrix)—determines the
observables like dσ/dΩ and polarization components.

4.2.4 The Optical Theorem

Following from the definition of the scattering amplitude f , as derived above, and
the (integrated) cross section σint,el for purely elastic scattering is an interesting
relation between both, the Optical Theorem. The imaginary part of the scattering
amplitude

f
(
θ = 0◦

) = 1

k

∞∑
�=0

(2�+ 1)eiδ� sin δ� (4.32)

= 1

2ik

∞∑
�=0

(2�+ 1)[η� − 1] (4.33)

is

Im
[
f
(
θ = 0◦

)]= 1

k

∞∑
�=0

(2�+ 1) sin2 δ�. (4.34)
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When comparing this with

σint,el = 4π

k2

∞∑
�=0

(2�+ 1) sin2 δ� (4.35)

σint,el = 4π

k
· Im[f (θ = 0◦

)]
(4.36)

for elastic scattering results. In the case of contributions from non-elastic channels
(absorption, see Sect. 8.2) this is

σtot ≡ σint,el + σabs = 4π

k
Im
[
fα

(
θ = 0◦

)]
(4.37)

with fα the scattering amplitude of the elastic channel. The optical theorem connects
a global quantity, the total cross section, with the forward scattering amplitude. It
arises from the conservation of probability flux (or, equivalently, the unitarity of the
S-matrix) requiring a destructive interference between the incident and the scattered
waves in the forward direction, something like a “shadow” of the incident beam, cast
by the target, and removing particles from it in proportion of the total cross section,
see e.g. Ref. [JOA83].

4.3 Remark and Exercise

4.1 For charged particles the solutions of the Schrödinger equation with the
Coulomb potential only, see Eq. (2.25), are the regular and irregular Coulomb
Functions

F� −→ sin(kr − �π/2− ηS ln 2kr + σ�), (4.38)

G� −→ cos(kr − �π/2− ηS ln 2kr + σ�) (4.39)

with the Coulomb phase shifts σ� = argΓ (�+1+ iηS). The Coulomb potential
is of long range and increasingly so towards lower energies, often requiring a
large number of partial waves before, at a certain large “screening” radius, the
series can be truncated. For short-range potentials such as the hadronic interac-
tion between nuclei often the series can be truncated after a few partial waves,
especially at very low energies with s-waves acting only. If both types of po-
tentials are acting (which is the normal case for charged particles) this different
behavior suggests treating them separately by adding the corresponding scatter-
ing amplitudes. This leads to the sum of the two cross sections (for Rutherford
scattering one of them is just the closed-form Rutherford cross section), but
in addition there is an interference term, which needs summing over the many
partial waves of the long-range Coulomb amplitude fC

dσ/dΩ = ∣∣f (θ)
∣∣2 = ∣∣fC(θ)

∣∣2 + ∣∣f̂ (θ)
∣∣2 + 2Re

[
f ∗C(θ) · f̂ (θ)

]
. (4.40)
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However, in this case the short-range amplitude f̂ is different from that without
any Coulomb potential

f̂ (θ)= i

2k

∑
(2�+ 1)e2iσ�

(
1− e2iδ�

)
P�(cos θ), (4.41)

(compare Eq. (4.31). For details see Ref. [JOA83]).
Show that for the case of neutral projectiles like neutrons the Coulomb func-

tions in the asymptotic limit become the spherical Bessel functions j�(kr) and
n�(kr) (now often y�(kr)).
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Chapter 5
Polarization in Nuclear Reactions—Formalism

When performing the usual (unpolarized) cross section measurements this implies—
for particles with spin �= 0—that in the description and experimentally there is sum-
ming over initial-channel and averaging over final-channel spin states. At the same
time this means that a certain amount of information is being discarded that could
be exploited if the nuclear reaction between spin substates could be studied. How
this is achieved is the content of this chapter, in which the formalism necessary is
discussed first. In many cases the polarization observables provide additional and
more subtle information, in others the desired information can only be gained by
using polarization, e.g. for detecting and measuring symmetry violations. Some
typical results obtained by using polarized particles or by measuring polarization
observables will be discussed in the pertinent following sections of this text. Two
recent references have treated this subject in more detail. One, Ref. [NUR13] deals
with polarization phenomena in high-energy physics and emphasizes Soviet and
Russian developments and thus complements nicely Ref. [HGS12] which describes
low-energy, non-relativistic polarization phenomena. Other references, especially
concerning the polarization formalism, are Refs. [FIC71, EBE74, CON94]. Two
early publications aimed at achieving an introductory, but basic understanding of
spin polarization are Refs. [BAR67, DAR67].

5.1 Polarization Formalism

Quantum mechanics deals with statistical statements about the result of measure-
ments on an ensemble of states (particles, beams, targets). In other words: by giv-
ing an expectation value of operators it provides probabilities (better: probability
amplitudes) for the result of a measurement on an ensemble. Here two limiting
cases can be distinguished. One is the case that our knowledge about the system
is complete e.g. when all members of an ensemble are in the same spin state. This
state will then be characterized completely by a state vector (ket). A special case
is the spin state of a single particle, which is always completely (spin-)polarized.
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We call this a pure state. In general, our knowledge of a system is incomplete and
can only be described by superposition of such pure states weighted with the prob-
ability of their occurrence in this superposition. Such a state is called a mixed state.
In the wavefunction of such a state probabilities enter in twofold ways: one is the
quantum-mechanical description of a state by its probability amplitude or its square,
its quantum-mechanical probability, the other the classical probability, with which
each quantum-mechanical state is mixed into the ensemble. The appropriate and
also practical description of such states is by using the density operator or density
matrix.

5.2 Expectation Value and Average of Observables
in Measurements

Carrying out a number of measurements of an observable A on a (generally) mixed
ensemble results in an expectation value, which is the statistical ensemble average of
the quantum-mechanical expectation values 〈Ψ (i)|A|Ψ (i)〉 with respect to the pure
states |Ψ (i)〉 present (or considered) in the ensemble. These should be expandable
in an eigenstate basis |un〉 (i.e. A|un〉 = an|un〉) with 〈un|um〉 = δunm

〈A〉 =
∑

i

pi

〈
Ψ (i)

∣∣A∣∣Ψ (i)
〉=∑

i

∑
n

pi

∣∣〈un

∣∣Ψ (i)
〉∣∣2an (5.1)

with ∣∣Ψ (i)
〉=∑

n

〈
un

∣∣Ψ (i)
〉〈|un〉 =

∑
n

c(i)
n |un〉. (5.2)

The two types of probability are: once as |〈un|Ψ (i)〉|2, which is the probability to
find the state |Ψ (i)〉 in an eigenstate |un〉 of A (with eigenvalue an) in the measure-
ment, but also as the probability pi of finding the ensemble in a quantum mechan-
ical state characterized by |Ψ (i)〉. The number of terms in the n-sums is N while
i depends on the composition of the statistical ensemble. In this representation the
properties of the ensemble and of the observable A factorize.

5.3 Density Operator, Density Matrix

With the foregoing relations the density operator ρ can be defined as

ρ =
∑

i

pi

∣∣Ψ (i)
〉〈
Ψ (i)

∣∣. (5.3)

Its matrix elements are

〈ρn,m = bm|ρ|bn〉 =
∑

i

pi

〈
bm

∣∣Ψ (i)
〉〈
Ψ (i)

∣∣bn

〉
. (5.4)
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With this definition the ensemble average of an operator (an observable) A can be
written comfortably

〈A〉 =
∑
n

∑
m

〈bm|ρ|bn〉〈bn|A|bm〉 = Tr(ρA). (5.5)

Since the trace of a matrix is independent of its different representations 〈A〉 can be
evaluated in any suitable basis.

5.3.1 General Properties of ρ

The density matrix (see e.g. [FAN57, FEY72]) is especially suited for a description
of an arbitrary (pure or mixed) polarization state (differently from a wave function).
With it, averages and expectation values as well as statistical distributions of mea-
surable quantities can be described.

• Every quantized statistical mixture is described exactly and as completely as pos-
sible by its density operator.

• Pure and mixed states are being treated in identical ways and operator techniques
can be used consistently for the description.

• A wave function |Ψ 〉 can be determined only up to a phase factor eiφ (which
plays no role for the observables). The density matrix ρ, however, is identical for
|Ψ 〉 and |Ψ 〉eiφ .

Other properties of ρ are:

• The trace of ρ is 1

Tr(ρ)=
∑

i

∑
n

pi

〈
bn

∣∣Ψ (i)
〉〈
Ψ (i)

∣∣bn

〉=∑
i

pi

〈
Ψ (i)

∣∣Ψ (i)
〉= 1. (5.6)

(This follows also from 〈A〉 = Tr(ρA) with A = E (E = unit matrix) and∑
k pk = 1.)

• For A to have real expectation values ρ must be hermitean:

ρ = ρ† : ρik = ρki ∗ . (5.7)

• ρ is positively definite (i.e. all diagonal elements are ≥ 0 ):

〈bn|ρ|bn〉 =
∑

i

pi

〈
bn

∣∣Ψ (i)
〉〈
Ψ (i)

∣∣bn

〉=∑
i

pi

∣∣〈bn

∣∣Ψ (i)
〉∣∣2 ≥ 0. (5.8)

5.3.2 Density Matrix of the General Mixed State

The density matrix is equally useful for pure and mixed states. The trace Tr(ρ2)≤ 1
is a measure of the degree of mixing of an ensemble (i.e. its deviation from the pure
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state)

Tr
(
ρ2)=∑

n

∑
i

∑
k

pipk

〈
n
∣∣Ψ (i)

〉〈
Ψ (i)

∣∣Ψ (k)
〉〈
Ψ (k)

∣∣n〉

=
∑

i

∑
k

pipk

∣∣〈Ψ (i)
∣∣Ψ (k)

〉∣∣2

=
∑

k

(pk)
2 ≤

{(∑
k

pk

)2

= [Tr(ρ)
]2 = 1

}
, (5.9)

where the Schwarz inequality and the following symbolic relations have been used:

Tr
∑
=
∑

Tr, (5.10)

Tr(ABC) = Tr(BCA)= Tr(CAB) and (5.11)∑
|n〉〈n| = 1. (5.12)

While the density matrix

ρ =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ (5.13)

represents a pure state (one of complete polarization in the+x direction), the density
matrices

ρ = 1/2

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ or ρ = 1/3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ (5.14)

are those of mixed (partially polarized) states. The second one—with a uniform
occupation of all spin substates—characterizes a completely unpolarized (or max-
imally mixed) state. All spin substates belonging to spin S have the same weight
pi = 1/(2S + 1) and

ρ =
∑
m

|m〉 1

2S + 1
〈m| and Tr

(
ρ2)= 1

2S + 1
< 1. (5.15)

5.3.3 Examples for Density Matrices

Spin S = 1/2 As outlined above a pure state is characterized completely by its
wave function

|Ψ 〉 = a|χ+1/2〉 + b|χ−1/2〉 ≡ a|↑〉 + b|↓〉 = a

(
1

0

)
+ b

(
0

1

)
. (5.16)
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Its density matrix is then

ρ =
(|a|2 ab∗

ba∗ |b|2
)

with |a|2 + |b|2 = 1 (5.17)

and the relation

Tr(ρ)= Tr
(
ρ2)= 1 (5.18)

holds.
A completely unpolarized beam with all spin-substates equally occupied has the

density matrix

ρ = 1/2

(
1 0
0 1

)
= 1/2

[(
1 0
0 0

)
+
(

0 0
0 1

)]
. (5.19)

(This corresponds to a superposition of pure spin states with equal weights of 1/2.)
A general beam, partially polarized in an arbitrary direction relative to the z axis,

is described by a density matrix consisting of two contributions: one contribution p

(0 ≤ p ≤ 1) that is completely polarized, and the other (1− p) that is completely
unpolarized

ρ = (1− p)
1

2

(
1 0
0 1

)
+ p

(
ρ++ ρ+−
ρ−+ ρ−−

)

=
(

1−p
2 + p cos2 β

2
p
2 sinβe−iφ

p
2 sinβeiφ 1−p

2 + p sin2 β
2

)
. (5.20)

Upon diagonalization (e.g. by a rotation by−β , a unitary transformation, for details
see Chap. 5.4) this becomes

ρ = 1/2

(
1+ p 0

0 1− p

)
. (5.21)

In this case the state can be interpreted as a superposition of the two pure states de-
fined with respect to the quantization axis with the contributions (occupation num-
bers) |a|2 and |b|2 (and N+ and N−, respectively).

ρ =N+
(

1 0
0 0

)
+N−

(
0 0
0 1

)
=
(

N+ 0
0 N−

)
. (5.22)

By equating Eqs. (5.21) and (5.22) we see that

p = N+ −N−
N+ +N−

(5.23)

has the usual form of a polarization (it is in fact the modulus of the vector polar-
ization of a spin-1/2 system). It is therefore suggestive to introduce the general
definition.
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Definition of “Polarization” Spin polarization is the expectation value of a spin
operator. Its components are expectation values of the corresponding spin-operator
components with equal transformation properties (scalar, vector, tensor, and higher
ranks).

If we take �S to be a spin operator (with vector character such as for the spin-1/2
case) in the diagonal representation with respect to the z direction as quantization
axis of ρ one obtains for the z component1

pz = 〈Sz〉 = Tr(ρSz)

Tr(ρ)

= 1

Tr(ρ)
Tr

[(
N+ 0
0 N−

)(
1 0
0 −1

)]

= 1

Tr(ρ)
Tr

(
N+ 0
0 −N−

)

= N+ −N−
N+ +N−

, (5.24)

which agrees with the usual (naïve) definition of a polarization.

Spin S = 1 In the diagonal representation also a naïve definition of the (vector)
polarization can be introduced, analogous to the spin-1/2 case

pz = N+ −N−
N+ +N0 +N−

. (5.25)

However, since in this definition no statement about the occupation of the state |χ0〉
has been made, it is evident that at least one additional independent quantity has
to be defined in order to be able to describe the spin-1 situation completely. This
quantity is called tensor polarization (sometimes also “alignment” for spin-1 parti-
cles such as photons as different from vector “polarization”) and it is defined as the
(normalized) difference between the sum of N+ and N− and N0

pzz = N+ +N− − 2N0

N+ +N0 +N−
. (5.26)

For a pure state, similar to the spin-1/2 case (for the up, parallel, and down states
also indices +, 0, and −1 or ↑,→, or ↓ are in use)

|Ψ 〉 = a|χ1〉 + b|χ0〉 + c|χ−1〉 ≡ a|1〉 + b|0〉 + c|−1〉 =
⎛
⎝a

b

c

⎞
⎠ (5.27)

1For the following discussion a description in Cartesian coordinates is assumed. For spin-1 parti-
cles the indices z or zz with z along an arbitrary axis are explicitly written to distinguish between
vector and tensor polarization.
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and

ρ =
⎛
⎝|a|

2 ab∗ ac∗
ba∗ |b|2 bc∗
ca∗ cb∗ |c|2

⎞
⎠ . (5.28)

For mixed states the ensemble average over the pure states that constitute the en-
semble has to be taken.

For Spin S = 1 the state vectors and density matrices are

|↑〉 =
⎛
⎝1

0
0

⎞
⎠ |→〉 =

⎛
⎝0

1
0

⎞
⎠ |↓〉 =

⎛
⎝0

0
1

⎞
⎠

ρ+1 =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ ρ0 =

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ ρ−1 =

⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠

pz 1 0 −1
pzz 1 −2 1

(5.29)

Mixed states contain the pure states with their respective statistical weights.
A completely unpolarized beam is described by

ρ = 1

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ . (5.30)

For a beam with complete positive “alignment” the+1 and−1 states are completely
occupied and the density matrix is

ρ = 1

2

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ (5.31)

with pz = 0, pzz = 1. The situation of maximal negative alignment is obtained when
only the 0 state is occupied:

ρ =
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ (5.32)

with pz = 0, pzz =−2. A case occurring e.g. in the Lambshift polarized-ion source
is a mixed state where the +1 state has the (relative) occupation number of 2/3, the
0 state that of 1/3

ρ = 1

3

⎛
⎝ 2

√
2 0√

2 1 0
0 0 0

⎞
⎠ (5.33)
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and pz = 2/3, pzz = 0. A further case realized there is

ρ = 1

3

⎛
⎝

1
2 0 0
0 2 0
0 0 1

2

⎞
⎠ (5.34)

and pz = 0, pzz =−1.

Rotation of a Pure S = 1 State The rotation of a spin-1/2 state has been indicated
above, see Sect. 5.3.3. The general formalism for rotations will be described below
in Chap. 5.4. The rotation of ρ by rotation functions according to

ρ′ =DρD† (5.35)

is described there in detail. For

ρ =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

under a rotation by β,φ the rotated density matrix is

ρ′ = 1

4

⎛
⎝ (1+ cosβ)2

√
2(1+ cosβ) sinβeiφ sin2 βe2iφ√

2 sinβ(1+ cosβ)e−iφ 2 sin2 β
√

2 sinβ(1− cosβ)eiφ

sin2 βe−2iφ
√

2(1− cosβ) sinβe−iφ (1− cosβ)2

⎞
⎠

(5.36)

with the rotation matrix (see Sect. 5.4) for S = 1

D= 1

2

⎛
⎝ (1+ cosβ)eiφ −√2 sinβeiφ (1− cosβ)eiφ√

2 sinβ 2 cosβ −√2 sinβ

(1− cosβ)e−iφ
√

2 sinβe−iφ (1+ cosβ)e−iφ

⎞
⎠ (5.37)

ρ′ has the trace of 1 and represents—which is not easily recognizable from its
external form—also a pure state.

5.3.4 Complete Description of Spin Systems

The number of parameters for a complete description of a system with spin S de-
pends on the value of S. For example for S = 1: besides the intensity (or number of
particles) being a scalar quantity or a tensor of rank 0, the vector polarization rank 1)
needs three, the tensor polarization (a tensor of rank 2) needs nine components mi-
nus one for a normalization condition (making it traceless). Altogether these are 11
parameters (12 with the intensity). The polarized beam e.g. from an ion source has
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rotational symmetry around the z axis, the direction of the beam. Therefore the ten-
sor will be symmetric, i.e. pxx = pyy , pxy = pyx etc., which reduces the number of
parameters to 8 (9). For the polarization of particles produced in a nuclear reaction
this reduction does not hold. But symmetries like parity conservation help reduce the
number of observables. A special case are again pure states. Such a state is described
by 4S = 2(2S+1)−2 real parameters (2S+1 complex numbers minus one normal-
ization condition minus one common phase). Normally for mixed states the number
of parameters is 4S(S+1), i.e. 2(2S+1)2 real numbers minus (2S+1)2 hermiticity
conditions minus one normalization: 2(2S + 1)2 − (2S + 1)2 − 1= 4S(S + 1). In
numbers this is shown in Table 5.1:

Table 5.1 Number of parameters necessary for a description of spin states

Pure state in z

direction
Pure state in arbitrary direction
β,φ relative to x, y, z

Mixed state general

S = 1/2 1 2 3

pz e.g. β,φ e.g. px,py,pz

S = 1 2 4 8

e.g. pz,pzz e.g. pz,pzz e.g. px,py,pz

β,φ pyy,pzz,pxz,pxy,pyz

S = 3/2 3 6 15

5.3.5 Expansions of the Density Matrix, Spin Tensor Moments

The density matrix directly is not well suited to describe observables. It is rather
used to calculate expectation values of operators. The intensity of the incoming or
outgoing particles in a nuclear reaction, and also the number of target particles are
proportional to the trace of the relevant density matrix ρ. Since these quantities
transform as scalars they are, up to a normalization, equal to 1= Tr(ρE). It is cus-
tomary to normalize the incident density matrix exactly to 1 (Tr(ρ)in = 1) which
automatically leads to Tr(ρfin) �= 1. The expansion of the density matrix into basis
systems with well-defined properties (e.g. under transformations like rotations) pro-
vides a description of observables with corresponding behavior. Another require-
ment of the definition is certainly the correspondence of the so-defined quantities
with older naïvely defined quantities. Rank-1 polarization must behave like a vector
with a maximum value of 1, rank-2 polarization like a rank-2 tensor etc.

Therefore the prescription is to expand the density matrix into a complete set
of orthogonal basis matrices with the desired properties and with the expansion
coefficients being the new parameter set

ρ =
∑
j

λjU
†
j . (5.38)
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For the U only orthogonality is required: Tr(UiU
†
k ) = δik(2S + 1), but not neces-

sarily hermiticity since in general the λj are complex. Because ρ has (2S + 1)2

complex elements (2S + 1)2 basis matrices are needed (e.g. four for S = 1/2). The
expansion runs from j = 1 to (2S + 1)2. Every tensor of rank k has 2k + 1 compo-
nents, therefore

(2S + 1)2 =
kmax∑
k=0

(2k + 1)= 1

2
(kmax + 1)(2kmax + 2)= (kmax + 1)2. (5.39)

Thus, the maximum rank of spin tensors necessary for a complete description of a
spin system is kmax = 2S.

For the interpretation of the expansion coefficients λj : multiply both sides with
Ui , form the trace, use orthogonality and the definition of the expectation value of
an operator

Tr(ρUi) = Tr(Uiρ)= Tr

(
(2S+1)2∑

j=1

λjUiU
†
j

)
=
∑
j

λj Tr
(
UiU

†
j

)

=
∑
j

λj (2S + 1)δij = (2S + 1)λi ≡ 〈Ui〉 (5.40)

where the average is to be taken over the ensemble (e.g. the beam). By comparison
one obtains

λi = 1

2S + 1
〈Ui〉beam (5.41)

and

ρ = 1

2S + 1

(2S+1)2∑
j=1

〈Uj 〉beamU
†
j . (5.42)

Like in other expansions (electromagnetic, mass moments . . . ) the coefficients
〈Uj 〉 are called moments of the expansion, here: (spin) tensor moments. This con-
cept was introduced by Fano [FAN53].

The most important of such expansions are those into Cartesian and into spher-
ical tensors. The latter behave under rotations like Spherical Harmonics Ym

� (θ,φ).
It is useful to choose irreducible representations for the Uj . All transformations,
e.g. rotations are then linear and different ranks of submatrices will not be mixed
by the transformation, but only transform within their rank (e.g. components of the
tensor polarization do not produce a vector polarization).
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Expansion of ρ in a Cartesian Basis for Spin S = 1/2

|χ〉 =
(

a

b

)

ρ =
(
|a|2 ab∗
ba∗ |b|2

)
.

(5.43)

As basis matrices Ui , the unit matrix, and the three Pauli matrices are chosen: �σ

U1 = E=
(

1 0
0 1

)

U2 = σx =
(

0 1
1 0

)

U3 = σy =
(

0 −i

i 0

)

U4 = σz =
(

1 0
0 −1

)
.

(5.44)

This leads to

ρ = 1

2

(
1+ 〈σ 〉σ )= 1

2
(1+ �p�σ)

= 1/2

(
1+ pz px − ipy

px + ipy 1− pz

)
. (5.45)

By comparing coefficients we find

px = 2 Re
(
ba∗

); py = 2 Im
(
ba∗

); pz = |a|2 − |b|2. (5.46)

The result for pz corresponds to the naïve definition of a polarization!

Spin S = 1 Here one needs (2S + 1)2 = 9 basis matrices of rank 2. They are
obtained applying the direct product of tensors with rank 1 (vectors). Because of
their rotation properties the three Cartesian Pauli matrices for S = 1 and the unit
matrix are chosen, from which one can form 13 3× 3 matrices of rank 2. Beginning
with

E=
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ Sx = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠

Sy = 1√
2

⎛
⎝0 −i 0

i 0 −i

0 i 0

⎞
⎠ Sz =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

(5.47)
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one forms

S2
x =

1

2

⎛
⎝1 0 1

0 2 0
1 0 1

⎞
⎠ S2

y =
1

2

⎛
⎝ 1 0 −1

0 2 0
−1 0 1

⎞
⎠

S2
z =

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ SxSy = 1

2

⎛
⎝i 0 −i

0 0 0
i 0 −i

⎞
⎠

SxSz = 1√
2

⎛
⎝0 0 0

1 0 −1
0 0 0

⎞
⎠ SySz = 1√

2

⎛
⎝0 0 0

i 0 i

0 0 0

⎞
⎠

(5.48)

and similarly for SySx, SzSx and SzSy . The Si are hermitean: SiSj = (SjSi)
†,

i.e. the SiSj are connected with the SjSi via commutation relations. The antisym-
metric combinations

SiSj − SjSi = iSk (5.49)

and the symmetric combinations

SiSj + SjSi = (SiSj )
† + (SjSi)

† = (SiSj + SjSi)
† (5.50)

are automatically hermitean. In a decomposition

SiSj = 1

2
(SiSj + SjSi)+ 1

2
(SiSj − SjSi) (5.51)

into a symmetric and an antisymmetric part the latter provides nothing new because
of the commutation relations. Therefore only the symmetric part is kept to form the
new combinations

Sij
′ = 1

2
(SiSj + SjSi)= 1/2

(
SiSj + (SiSj )

†). (5.52)

Of these there are exactly six. Five are needed, which allows the introduction of a
physical condition into the final definition of the Sij : The polarization of the un-
polarized ensemble ought to be zero: (Tr(Sj ) = Tr(SiS

′
j ) = 0). Since this is not

fulfilled for the Sij
′ with i = j , a new definition is used:

Sij =: 3S′ij − 2δij E= 3/2 (SiSj + SjSi)− 2δij E, (5.53)

leading to: Sxx + Syy + Szz = 0, Tr(Sij ) = Tr(Si) = 0. All “polarizations” of the
unpolarized ensemble are then zero. Of the three diagonal elements Sii only two
are independent. Also, since no two Sii are orthogonal, one uses two orthog-
onal linear combinations of the Sii instead. Several combinations are possible,
e.g. (Sxx −Syy;Szz) or (Szz−Sxx;Syy). Here Sxx +Syy and Sxx −Syy will be cho-
sen. With Tr(S2

i )= 2,Tr(S2
ij )= 9/2 and Tr(Sxx + Syy)

2 = 6,Tr(Sxx − Syy)
2 = 18
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the Cartesian expansion basis is

U1 = E;
U2 =

√
3/2Sx; U3 =

√
3/2Sy; U4 =

√
3/2Sz;

U5 =
√

2/3Sxy; U6 =
√

2/3Sxz; U7 =
√

2/3Syz; (5.54)

U8 =
√

1/2(Sxx + Syy);
U9 =

√
1/6(Sxx − Syy).

With 〈Sxx〉 + 〈Syy〉 + 〈Szz〉 = 0 and Sxx + Syy + Szz = 0 one obtains

ρ = 1

3

(2S+1)2∑
k=1

〈Uk〉U†
k

= 1

3

(
E+ 3

2

∑
i

〈Si〉Si + 1

3

∑
ij

〈Sij 〉Sij

)
(5.55)

(for a different derivation see [OHL72]). The sum over ij is meant such that for
i = j one, for i �= j two terms appear). Written out:

ρ = 1

3

⎛
⎜⎜⎝

1+ 3
2pz + 1

2pzz
1√
2
[ 32 (px − ipy)+ (pxz − ipyz)]

1√
2
[ 32 (px + ipy)+ (pxz + ipyz)] 1− pzz

1
2 (pxx − pyy)+ ipxy

1√
2
[ 32 (px + ipy)− (pxz + ipyz)]

1
2 (pxx − pyy)− ipxy

1√
2
[ 32 (px − ipy)− (pxz − ipyz)]

1− 3
2pz + 1

2pzz

⎞
⎟⎟⎠ . (5.56)

The polarization parameters of rank k (k = 0,1,2) form tensors of rank k. For k =
0 it is a scalar proportional to some intensity, for k = 1 it is a vector with three com-
ponents (the vector polarization) and for k = 2 it is a tensor of rank 2, represented
by a symmetric traceless (k + 1)× (k + 1) (thus 3× 3) matrix of the form

⎛
⎝pxx pxy pxz

pxy pyy pzy

pxz pzy pzz

⎞
⎠ (5.57)

with 5 independent parameters. Taken together the spin-1 system has 9 parameters.
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The relation to the components a, b, c of an (S = 1) spinor is

px =
√

2 Re
(
ba∗ + cb∗

); py =
√

2 Im
(
ba∗ + cb∗

);
pz = |a|2 − |c|2;

pxz = 1√
2

Re
(
ba∗ − cb∗

); pyz = 1√
2

Im
(
ba∗ − cb∗

);
pxy = Im

(
ca∗

);
pzz =−(pxx + pyy)= 1− 3|b|2 = |a|2 + |c|2 − 2|b|2

(5.58)

in agreement with the naïve definitions of pz and pzz.

Limiting Values of the Polarization Components Because of Tr(ρ) = |a|2 +
|b|2 + |c|2 = 1

|a|2 + |c|2 ≤ 1 (5.59)

holds and thus ∣∣|a|2 − |c|2∣∣≤ |a|2 + |c|2 ≤ 1. (5.60)

From this follows

|pz| ≤ 1 or − 1≤ pz ≤+1 (5.61)

and, because the choice of axes is arbitrary,

|px | ≤ 1 and |py | ≤ 1. (5.62)

In the same way it can be shown that

|pxz| ≤ 3/2; |pyz| ≤ 3/2; |pxy | ≤ 3/2; |pxx − pyy | ≤ 3 (5.63)

and therefore

−2≤ pzz ≤+1. (5.64)

The components of the vector and tensor polarization are not independent of each
other but are related via the occupation numbers (or the occupation probabili-
ties) Ni of the three substates of the spin-1 system. In the diagonal representation
(|a|2 = N+; |b|2 = N0; |c|2 = N−) the normalization with N+ + N0 + N− = 1
holds together with the “positivity condition” Ni ≥ 0. This is sufficient to deter-
mine the values of the vector and tensor polarization as functions of the occupation
numbers (Fig. 5.1).

Expansion into Spherical Tensors The representation of any vector can be Carte-
sian or spherical. Since tensors (tensor operators) of arbitrary rank can be generated
by the combination (the direct or external product) from the components of a given
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Fig. 5.1 Range of values of
the polarization components
of a spin-1 system as
functions of the (relative)
occupation numbers of a
spin-1 system with additional
conditions
N+ +N0 +N− = 1 and
Ni ≥ 0

set of vectors (vector operators) the spherical tensors τkq (e.g. of rank k = 2 or
higher) can be constructed from spin operators �S in their spherical representation
τkq (for k = 1). The resulting product operators in general are reducible, i.e. their
transformation properties e.g. under rotations will not be simple. By forming the
direct product of two vectors in three dimensions, a (Cartesian) tensor with nine
elements will result, which behave differently under rotations, namely like a scalar
(the trace of this tensor), like a vector (whose components are the three cross prod-
ucts of the original vector components), and like a tensor of rank 2.

Reducible tensors can be decomposed into objects (tensors) which still behave
differently but independently e.g. under rotations. More formally: A reducible Carte-
sian tensor Tij of rank 2 can be generated from two vectors U and V using the pre-
scription T=U⊗V, i. e. Tij ≡ UiVj . However, it can be decomposed (“reduced”)
in the following way:

UiVj = 1/3UVδij + 1/2 (UiVj −UjVi)+
[
1/2 (UiVj +UjVi)− 1/3 UVδij

]
.

(5.65)
Thus, the tensor is decomposed into a scalar (tensor of rank 0), an antisymmetric
tensor (vector or cross product), which transforms like a vector (tensor of rank 1),
and a 3× 3 traceless, symmetric tensor of rank 2. Symbolically:

3⊗ 3= 1⊕ 3⊕ 5. (5.66)

This, however, is just a decomposition of the reducible Cartesian tensor into spher-
ical components (with rotation properties like the spherical harmonics of ranks 0, 1
and 2). The matrices describing the tensor can then be decomposed into submatrices
along the main diagonal, which transform only linearly according to their rank and
without influencing the other submatrices. This “pure” behavior under rotations is
displayed only by the special linear combinations of the tensor components defined
above, but not by these alone. Under rotations of systems represented by reducible
tensors all components would have to be transformed in common and according
to the usual transformation rules for tensors—namely non-linearly in the rotation
functions.

Especially for higher spins and generally because of these transformation prop-
erties the use of irreducible spherical tensors is preferred for the description of
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polarization. Generalizing this to arbitrary spin systems: They transform under rota-
tions linearly in the rotation functions like the angular-momentum eigenfunctions,
the spherical harmonics Ym

� (θ,φ).
These tensors are generated by a special combination of spin vector operators

(which are irreducible per se!), by applying the principles of vector coupling of
angular momentum operators using Clebsch-Gordan coefficients where operators
of higher rank with identical transformation properties as those of the constituents
are generated:

τKQ =
∑
q,q ′

(
kk′qq ′

∣∣KQ
)
τkqτk′q ′ . (5.67)

The density matrices of higher-spin systems can be expanded into a complete set
of such basis matrices—just like for spin-1/2 systems. We define as a “spherical
basis” the irreducible tensors of rank K in a spherical coordinate representation
(short: “spherical tensors”). They have to fulfill at least one condition: τKQ has to
be transformed like the spherical harmonic of rank K and component Q Y

Q
K under

spatial rotations. The spherical tensors, like the spherical harmonics, are irreducible,
i.e. under transformations (rotations) they will always be transformed into tensors
of equal rank (about rotations see Sect. 5.4) with

τKQ′ =
∑
Q

DK
Q′Q(α,β, γ )τKQ. (5.68)

Example for the Construction of a Set of Spherical Tensors for S = 1 We
choose as basis

E=
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

S1 =− 1√
2
(Sx + iSy)=

⎛
⎝0 −1 0

0 0 −1
0 0 0

⎞
⎠

S−1 = 1√
2
(Sx − iSy)=

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠

S0 ≡ Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ .

(5.69)

These basis matrices are non-hermitean: S
†
±1 =−S∓1 and

Tr
(
S1S

†
1

)= Tr
(
S−1S

†
−1

)= Tr
(
S0S

†
0

)= 2. (5.70)
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From these one basis tensor of rank 0, three of rank 1, and five of rank 2 are con-
structed in analogy to the procedure with spherical harmonics (which are by defini-
tion spherical tensors), for which

Y
Q
K =

∑
q1q2

〈k1k2q1q2|KQ〉Yq1
k1

Y
q2
k2

(5.71)

holds, e.g. for K = 2

Y
Q
2 =

+1∑
q=−1

〈11qQ− q|2Q〉Yq

1 Y
Q−q

1 . (5.72)

Similarly tensor operators of still higher rank can be constructed by coupling of
tensor operators of lower rank (“contraction”). As spin operators for S = 1 the four
operators defined above E, S0 and S±1 can be used to construct the missing operators
of rank 2 S2Q

S2Q =
1∑

m=−1

〈11mQ−m|2Q〉SmSQ−m. (5.73)

Thus, e.g. (with Q= 0)

S20 =
∑
m

〈11mQ−m|20〉SmSQ−m = 1/
√

6(S1S−1 + S−1S1)+
√

2/3S2
0

= 1/
√

6
(
S1S

†
1 + S−1S

†
−1

)+√2/3S2
0

= −1/
√

6
(
S2 − S2

0

)+√2/3S2
0 = 1/

√
6
(−2+ 3S2

0

)
(5.74)

(since S2 is diagonal with S(S + 1)= 2). This procedure can be continued. All one
has to know are the Clebsch-Gordan vector coupling coefficients. In this way for
S = 1 the following irreducible spherical tensors (normalized according to Lakin
[LAK55], i.e. following the Madison convention) are obtained

τ00 = E=
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

τ11 =
√

3/2S+1 =
√

3/2

⎛
⎝0 −1 0

0 0 −1
0 0 0

⎞
⎠

τ1−1 =
√

3/2S−1 =
√

3/2

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠
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τ10 =
√

3/2S0 =
√

3/2

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ (5.75)

τ22 =
√

3S22 =
√

3S2+1 =
√

3

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠

τ21 =
√

3S21 =
√

3/2(S0S1 + S1S0)=
√

3/2

⎛
⎝0 −1 0

0 0 1
0 0 0

⎞
⎠

τ20 =
√

3S20 = 1/
√

2
(
3 S2

0 − 2
)= 1/

√
2

⎛
⎝1 0 0

0 −2 0
0 0 1

⎞
⎠ .

The missing components are calculated with

τK−Q = (−)Qτ
†
KQ. (5.76)

For S = 3
2 spherical tensors are constructed similarly

S3Q =
1∑

m=−1

〈21mQ−m|3Q〉S2mS1,Q−m. (5.77)

Spin Tensor Moments The quantities that specify the polarization in the spherical
representation are the expectation values of these tensor operators, the so-called spin
tensor moments tKQ = 〈τKQ〉. The hermiticity of ρ entails the hermiticity of the
tKQ: tK−Q = (−)Qt∗KQ. Therefore the density matrix can be expressed in terms of
tensor moments.

Spherical Tensors, Density Matrix, and Tensor Moments for Spin S = 1/2
The irreducible basis (as linear combinations of Pauli operators the spin tensors are
in this case automatically irreducible)

τ00 =
(

1 0
0 1

)

τ10 =
(

1 0
0 −1

)
= σz

τ11 =−
√

2

(
0 1
0 0

)
=−1/

√
2 (σx + iσy)

τ1−1 =
√

2

(
0 0
1 0

)
= 1/
√

2 (σx − iσy).

(5.78)
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The expansion of the density matrix is

ρ = 1/2
∑
KQ

〈τKQ〉τ †
KQ (5.79)

and

Tr
(
τKQτ

†
K ′Q′

)= 2δKQ,K ′Q′ (5.80)

and therefore

ρ = 1

2

(
1+ t10

√
2t1−1

−√2t11 1− t10

)
= 1

2

(
1+ pz px − ipy

px + ipy 1− pz

)
. (5.81)

By comparison

t00 is proportional to an intensity

t10 = pz (5.82)

t1±1 =∓1/
√

2(px ± ipy).

Density Matrix and Tensor Moments for Spin S = 1

ρ = 1

3

⎛
⎜⎜⎜⎝

1+
√

3
2 t10 + 1√

2
t20

√
3
2 (t1−1 + t2−1)

√
3 t2−2

−
√

3
2 (t11 + t21) 1−√2 t20

√
3
2 (t1−1 − t2−1)√

3 t22 −
√

3
2 (t11 − t21) 1−

√
3
2 t10 + 1√

2
t20

⎞
⎟⎟⎟⎠ .

(5.83)

By comparison with Eqs. (5.28) and (5.56) the connection between the tkq , the
wave-function amplitudes, and the Cartesion tensor components is obtained Ten-
sor moments of rank k = 0 are proportional to an intensity (one scalar, invariant
under rotations)

t00 = 1= |a|2 + |b|2 + |c|2. (5.84)

Tensor moments of rank k = 1 describe the vector polarization (three components,
transformation properties of a vector)

t1±1 =−
√

3/2
(
ba∗ + cb∗

)=∓√3/2 (px ± ipy)

t10 =
√

3/2
(|a|2 − |c|2)=√3/2 pz.

(5.85)

Tensor moments of rank k = 2 describe the tensor polarization (eight independent
components, transformation properties of a second-rank tensor)

t20 = 1/
√

2
(|a|2 + |c|2 − 2|b|2)= 1/

√
2
(
1− 3|b|2)= 1/

√
2 pzz
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t2±1 =
√

3/2
(
cb∗ − ba∗

)=∓1/
√

3 (pxz ± ipyz) (5.86)

t2±2 =
√

3 ca∗ = 1/(2
√

3) (pxx − pyy ± 2ipxy).

Inversely:

px =−1/
√

3 (t11 − t1−1)

py = i/
√

3 (t11 + t1−1)

pz =
√

2/3 t10

pxx =
√

3/2 (t22 + t2−2)− 1/
√

2 t20

pyy =−
√

3/2 (t22 + t2−2)− 1/
√

2 t20 (5.87)

pzz =
√

2 t20

pxy = pyx =−i
√

3/2 (t22 − t2−2)

pxz = pzx =−
√

3/2 (t21 − t2−1)

pyz = pzy = i
√

3/2 (t21 + t2−1).

For analyzing powers of nuclear reactions the same relations apply (with upper-
case variables Tkq and Ai or Aik). In analogy to other expansions into momenta
in physics (Mass distributions → moments of inertia, charge/current distributions
→ E� and M� multipole moments, etc.) the expansion coefficients of spin tensor-
moment expansions have geometrical interpretations. Visualizations have been at-
tempted in Refs. [DAR71, BAR67, DAR67, HGS12]. The vector polarization (ten-
sor of rank 1) behaves like a classical vector and is fully described by its three
components. It points into a distinct direction, which is characterized by a sign—
different from the tensor polarization that has only an orientation (“alignment”) of
an anisotropic spin distribution with respect to an axis.

Polarization of Particles with Higher Spin The fact that particles with S = 3/2
(7Li, 23Na) have been polarized (see Sect. 16.6.2) requires an appropriate descrip-
tion of tensor moments. This case has been discussed in Ref. [DAR71], so will not
be detailed here. It is clear that tensor moments up to rank three have to be con-
sidered. They must be constructed from spin operators for S = 3/2, which—like in
the spin-1/2 and spin-3/2 case (see Eqs. (5.44), (5.78), and (5.69))—can be derived
from contractions of lower-spin operators and taking into account commutation re-
lations and transformation properties of spherical tensors as well as a normalization
condition. Note that in the following equations spherical tensor moments are thus
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expressed by spherical combinations of the spin-1 Cartesian tensors

t30 = 1

6
√

5

〈
20S3

z − 41Sz

〉

t3±1 =∓ 1

24
√

15

〈(
60S2

z − 51
)
(Sx ± iSy)+ (Sx ± iSy)

(
60S2

z − 51
)〉

t3±2 = 1√
6

〈
Sz(Sx ± iSy)

2 + (Sx ± iSy)
2Sz

〉

t3±3 =∓1

3

〈
(Sx ± iSy)

3〉.

(5.88)

Although spins > 1 have not been considered in the Madison convention its appli-
cation, e.g. concerning coordinate systems is straightforward. It is evident that for
higher spins the Cartesian notation becomes impractical and spherical tensor mo-
ments should be used (the term “efficiency tensor (moment)” in [DAR71] should be
replaced by “analyzing power”).

5.4 Rotations, Angular Dependence of the Tensor Moments

5.4.1 Generalities

It is important to be able to describe polarization observables in rotated coordinate
systems. Typical applications are: Spin precession in magnetic fields, deflection of
polarized-particle beams by optical elements, nuclear reactions, double scattering
and polarization transfer. Especially in nuclear reactions it is necessary to describe
observables in different coordinate systems rotated against each other such as for
spin-transfer experiments.

We start with the rotation of the density matrix ρ.
A reminder: In quantum mechanics finite rotations of a system are described by

rotation operators that are integrals over operators for infinitesimal rotations (which
are linear!). E.g. the rotation operator for the finite rotation by an angle α around the
z axis has the form (the components of S are given in units of � (i.e. �≡ 1))

D(α)= e−iαSz . (5.89)

5.4.2 The Description of Rotations by Rotation Operators

The most general rotation is composed from three rotations by the Euler angles
(Attention! Several conventions exist; her we follow Condon/Shortley [CON67],
Rose [ROS57] and Brink/Satchler [BRI71]): a sequence of right-handed rotations



98 5 Polarization in Nuclear Reactions—Formalism

about the z, then the new y, and then about the then new z axis. This is equivalent to
a sequence of rotations about the respective old z, y, and x axes. In addition, one has
to distinguish between “active” rotations of the system in a fixed coordinate system
and “passive” rotations of the coordinate system. A very useful discussion of these
conventions, tables of terms (Table 3.1) and of the definitions and the phase factors
of rotation functions used by different authors (Tables 4.1 and 4.2) can be found in
[CHA98]). The definition of rotation operators used here is

D(αβγ ) = e−iγ Sz
′
e−iβSy

′′
e−iαSz

= e−iαSz
′
e−iβSy e−iγ Sz = e−iβSy e−i(α+γ )Sz . (5.90)

They have the matrix elements

〈
IM ′

∣∣D(αβγ )|IM〉 =DI
MM ′(αβγ ) (5.91)

and
〈
IM ′

∣∣D†(αβγ )|IM〉 =DI
MM ′

∗
(αβγ ). (5.92)

D is unitary, i.e.

D†(αβγ )=D−1(αβγ )=D(−α,−β,−γ ), (5.93)

i.e.

DI
MM ′

∗
(αβγ )=DI

M ′M(−γ,−β,−α) (5.94)

and
∑
M ′

DI
M ′N

∗
DI

M ′M = δMN. (5.95)

For the product (two rotations in sequence)

DL
MM ′ =

∑
m1m1

′m2m2
′
D

j1
m1m1

′D
j2
m2m2

′ 〈j1j2m1m2|LM〉〈j1j2m1
′m2
′∣∣LM ′

〉
. (5.96)

(The symbol 〈j1j2m1m2|LM〉 denotes the Clebsch-Gordan (vector coupling) coef-
ficients, see Sect. 22.3.)

When choosing, as usual, the eigenfunctions of Sz as basis vectors, D simplifies
to

DI
MN(αβγ )= e−i (αM+γN)〈IM|e−iβSy |IN〉. (5.97)

The first factor is a phase factor, the second a matrix element of the reduced rota-
tion functions dI

MN(β). Condon/Shortley [CON67] define the dk
mn as
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dk
mn =

∑
t

(−)t
[(k +m)!(k −m)!(k + n)!(k − n)!]1/2

(k +m− t)!(k − n− t)!t !(t + n−m)!

×
(

cos
β

2

)2k+m−n−2t(
sin

β

2

)2t+n−m

. (5.98)

The sum goes over all t leading to non-negative factorials. For M or N = 0 D
becomes a spherical harmonic via

DI
M0(βα)=

(
4π

2I + 1

)1/2

YM
I (β,α)=

(
4π

2I + 1

)1/2

Y−M
I (β,α) (5.99)

and

DI
00(β)= PI (cosβ) (Legendre polynomial). (5.100)

Example S = 1/2, Sy = 1/2σy :

e−iβSy = e−iβσy/2 = cos
β

2
− iσy sin

β

2
. (5.101)

Thus, the reduced rotation function results for a rotation about the y axis

d
1/2
mm′ =

(
cos β

2 − sin β
2

sin β
2 cos β

2

)
. (5.102)

5.4.3 Rotation of the Density Matrix and of the Tensor Moments

This allows e.g. a description of the density matrix in a rotated system or—
equivalently—of a rotated density matrix in the old coordinate system. As an ex-
ample we rotate the density matrix, which is diagonal with respect to the z axis

ρ′ = d
1/2
mm′(β)

1

2

(
1+ p 0

0 1− p

)
d

1/2
mm′

†
(β)

= d
1/2
mm′(β)

1

2

(
1+ p 0

0 1− p

)
d

1/2
mm′

T
(β). (5.103)

The polarization direction is completely determined by the two parameters β,φ. β

is the polar angle (relative to the z axis), φ the azimuthal angle = angle of the (�S, z)
plane relative to an arbitrarily defined x axis (where x, y, z form a righthanded sys-
tem). In the rotation function D therefore only two angular parameters are physically
relevant

DI
MM ′(α,−β̃Euler,−γ − π/2)≡DI

MM ′(0, βpolar, φazimut). (5.104)

Under rotations tensor moments transform more simply than the density matrix.
The spherical tensors have been defined such as to transform under rotations like
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the spherical harmonics

tkq =
∑
q ′

Dk
q ′q(αβγ̃ )tkq ′ = t̂k0D

k
0q(β,φ). (5.105)

Here t̂k0 signifies the maximum component, for which ρ also is diagonal, i.e. if the
z axis is the quantization axis. Thus the single components for spin S = 1 (S = 1/2
is trivial) are

t10 = t̂10 cosβ

t1±1 =∓it̂10
1√
2

sinβeiφ

t20 = t̂20
1

2

(
3 cos2 β − 1

)
(5.106)

t21 =−it̂20

√
3

2
sinβ cosβeiφ

t22 =−t̂20

√
3

8
sin2 βe2iφ.

The connection between Cartesian and spherical tensors is of practical importance
because in the literature both descriptions are widely used. For the Cartesian tensors
the corresponding transformations result from the connection with the spherical ten-
sors. E.g. for pzz: pzz = p∗zzP2(cosβ), where p∗ and p∗zz are the Cartesian maxi-
mum components of the vector and tensor polarization for S in the direction z. Thus,

px = p∗ · P 1
1 (cosβ) cosφ = p∗ · sinβ cosφ

py = p∗ · P 1
1 (cosβ) sinφ = p∗ · sinβ sinφ

pz = p∗ · P1(cosβ)= p∗ · cosβ

pzz = p∗zz · P2(cosβ)= p∗zz ·
1

2

(
3 cos2 β − 1

)

pxx = p∗zz ·
1

2

[
P 2

2 (cosβ) cos2 φ − 1
]

pyy = p∗zz ·
1

2

[
P 2

2 (cosβ) sin2 φ − 1
]

pxx − pyy = p∗zz ·
1

2
P 2

2 (cosβ) cos 2φ = p∗zz ·
(
−3

2

)
sin 2β cos 2φ

pxy = p∗zz · P 2
2 (cosβ) sin 2φ

pyz = p∗zz ·
1

2
P 1

2 (cosβ) sinφ

pxz = p∗zz ·
1

2
P 1

2 (cosβ) cosφ = p∗zz ·
(
−3

4

)
sin 2β cosφ.

(5.107)
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Experimentally interesting special cases are

• β = 0: only pz,pzz �= 0
• β = 54.7: pzz = 0
• β = 90 and e.g. φ = 90◦:

pzz = −1

2
p∗zz

pxx − pyy = 3

2
p∗zz

py = p∗ and

px = pz = pxz = pyz = pxy = 0.

5.4.4 Practical Realization of Rotations

In practice the rotation of the quantization axis is achieved using the Larmor preces-
sion of the spins in suitable magnetic fields. Only components perpendicular to the
spin vector are affected. For charged particles the deflection of a beam is coupled
to the spin precession (e.g. in dipole and quadrupole magnets etc.). The compo-
nent parallel to the magnetic field remains unchanged. In Wien filters the magnetic
deflection is compensated by an electric field perpendicular to the magnetic field
and the velocity vector of the particles. For homogeneous fields the Wien filter is
“straight-looking”, when (in MKSA units) the velocity of the particles is v =E/B .
With a Wien filter rotatable about the beam axis any spin direction in space can be
realized (see Sect. 16.8).

5.4.5 Coordinate Systems

Especially for reactions in which polarization observables are measured the ap-
propriate definition of coordinate systems is very important. In “unpolarized” re-
actions incoming and outgoing particle momenta define one plane, the scattering
plane. A polarization vector adds another direction (or plane) thus introducing an
azimuthal dependence of observables. Two polarizations (as in transfer reactions
or spin correlations) add more such preferential directions. In nuclear reactions the
outgoing beam in general will be rotated against the incident beam by the scatter-
ing angles θ,φ. The tensor moments in the entrance and exit channels can be de-
scribed in different ways. Very common is the description in the helicity formalism,
in which each particle is described with respect to its direction of motion �kin and
�kout, respectively, as its positive z axis. The positive y axis follows the convention

ŷ = �kin × �kout

|�kin × �kout|
(5.108)
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while the x axis is determined by requiring a right-handed system. In going from the
entrance to the exit channel there is the choice of describing the rotation about angles
defined either in the laboratory or in the relative (c.m.) system. This convention is
the Madison Convention [MAK71] and implies the Basel Convention [BAK61], see
Sect. 6.4.

5.5 Exercises

5.1 (a) What kind of states
( a

b

)= a
( 1

0

)+ b
( 0

1

)
are represented by the density ma-

trices

ρ = 1

2

(
0 0
0 1

)
,

1

2

(
1 1
1 1

)
,

1

2

(
1 −1
−1 1

)
, and

1

2

(
1 0
0 1

)
?

(5.109)

(b) Show that the last density matrix can describe different mixed states, dif-
fering by phase factors, but with unique density matrix, and thus describing
the same physics.

(c) An example of a partially polarized beam is a 75 %/25 % mixture (an “inco-
herent superposition”) of two pure ensembles with probabilities p(Sz,↑)=
0.75 and p(Sx,↑)= 0.25. Using Exercise 5.1(a) show that

ρ = 1

8

(
7 1
1 1

)
. (5.110)

Give the spin-expectation values (≡ “ensemble averages”) 〈Sx〉, 〈Sy〉, and
〈Sz〉. Show that this ensemble can be composed in different ways (from
pure states).

5.2 Why is it sensible to give absolute or relative errors with cross section results
whereas for polarization observables relative errors may not be helpful?

5.3 By which angle does the polarization vector of a proton (deuteron) beam polar-
ized in the x direction precess in the x–z plane in a 90° analyzing magnet with
the magnetic field in the y direction? Does this precession depend on the beam
energy? What is the polarization direction relative to the new z beam direction
after the magnet?

5.4 Design a Wien filter (crossed transverse E and B fields) such that the polariza-
tion vector of a proton (deuteron) beam, initially transversally polarized in the
E-field direction precesses by 90°, becoming longitudinally polarized?

5.5 How do electric fields influence the spin polarization? Could you design an
electric-field configuration that transforms the longitudinal polarization of a
proton beam into an exactly transverse one? (Assume that we use a field with
constant field strength along the bending path.) What electric field strength
would be necessary for a 15 MeV proton beam and a bending-path length of
2 m? Why do electric deflectors become impractical at higher energies?
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Chapter 6
Nuclear Reactions of Particles with Spin

6.1 General

As for nuclear reactions of spinless particles (this is the only and the simplest case
normally treated in lectures and textbooks) scattering amplitudes between entrance
and exit states are a useful tool for the description of two-particle nuclear reactions,
a + A −→ b + B (or A(a,b)B). These states, however, have to be considered as
spin substates in the entrance and exit channels, which leads to the following com-
plications:

• A scattering amplitude will now become a scattering matrix, usually called M ma-
trix.

• Depending on which quantum numbers are conserved (which depends on the
symmetry properties of the physical system) angular-momentum coupling has to
be performed, e.g. the spins of the incident particles sa, sA are coupled to the
entrance channel spin S, this in turn is coupled to the entrance-channel orbital
angular momentum l to yield the (conserved) total angular momentum J, and
analogously for the exit channel (′)

S(sa + sA)+ l−→ J−→ S′(sb + sB)+ l′. (6.1)

It is useful to apply the formalism of Racah algebra (6j, 9j symbols, or Wigner’s
W or Z coefficients), in which the summations about magnetic quantum numbers
[WEL63] have been performed already and that have relatively simple symme-
tries and rules.

• In two-particle reactions the entrance and the exit channels may contain up to
two particles with spin. The description of the spin state of the entrance and exit
channel takes place in a spin state, the dimension of which is the direct product
of the spin-space dimensions of each of the two particles: (2sa + 1)(2sA + 1)

and (2sb + 1)(2sB + 1). The corresponding density matrices are also products
of the two sub-density matrices and similarly for their expansions into Cartesian
or spherical spin tensors. Since in the entrance channel normally there exist no
correlations between the spin states of the beam and target the density matrix for

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
DOI 10.1007/978-3-642-53986-2_6, © Springer-Verlag Berlin Heidelberg 2014
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the entrance channel can be factorized as well as the corresponding spin tensor.
This, however, never applies for the exit channel.

6.2 The M Matrix

The generalization of the scattering amplitude is the transfer or M matrix. It is the
matrix that transforms the entrance channel density matrix into that of the exit chan-
nel. Formally,

ρfin =MρinM†. (6.2)

The density matrices ρin and ρfin are the direct-product density matrices of the two
particles of the entrance and the exit channels, respectively,

ρin = ρa(sa)⊗ ρA(sA) and ρfin = ρb(sb)⊗ ρB(sB). (6.3)

This allows in principle a complete description of a nuclear reaction, more precisely
of its observables that have been defined as expectation values of certain (spin)
operators.

(a) Besides the integrated (total) cross section the simplest observable is the unpo-
larized differential cross section, for which the beam and target are unpolarized
and no polarization, but only intensities are measured in the exit channel. It is
defined as being proportional to the normalized expectation value of the unit
operator (“intensity”)

W = Tr(ρfinE)= Tr
(
MρinM

†E
)
. (6.4)

With

ρin = ρa(sa)⊗ ρA(sA)= 1

2sa + 1
E(sa)⊗ 1

2sA + 1
E(sA) (6.5)

—this is a (2sa + 1)(2sA + 1)× (2sa + 1)(2sA + 1) matrix—follows

ρfin =
1

(2sa + 1)(2sA + 1)
MM†. (6.6)

This results in the cross section in the usual sense—the “unpolarized” cross
section, if one applies its “usual” definition (“outgoing particle current into the
solid-angle element dΩ at the angle θ , divided by the incident particle current
density”) and the correct phase-space factors (density of final states, Fermi’s
“Golden Rule”)

(
dσ

dΩ

)
0
= 1

(2sa + 1)(2sA + 1)

kfin

kin
Tr
(
MM†). (6.7)
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(b) When the incident beam is polarized, the target unpolarized, no polarization in
the exit channel is measured and an expansion of the density matrix into Carte-
sian or spherical tensors with their special transformation properties is used,
then ρin may be written e.g. in Cartesian coordinates

ρin =
1

(2sa + 1)(2sA + 1)

∑
i

pi︷︸︸︷
〈σi〉

(
σi ⊗E(sA)

)
(6.8)

and the cross section

dσ

dΩ
= 1

(2sa + 1)(2sA + 1)

kfin

kin

∑
i

piTr
(
MσiM†)

= 1

(2sa + 1)(2sA + 1)

kfin

kin

[
Tr
(
MM†)+∑

i

piTr
(
MσiM†)]

=
(

dσ

dΩ

)
0

[
1+

∑
i

pi

Tr(MσiM†)

Tr(MM†)

]
. (6.9)

The Ai = Tr(MσiM†)

Tr(MM†)
are analyzing powers, which measure how the reaction is

influenced by each single component of the beam polarization pi . The index i

has a general meaning: for sa = 1/2 the beam can at most be vector polarized
(rank 1) and the range of i is 1 to 3 or x, y, z, respectively. For spin-1 particles
i signifies the components of the vector polarization and of the rank-2 tensor
polarization (in the Cartesian case i signifies the combinations x, y, z and (jk)

with j , k = x, y, z). Therefore these are the components of the vector and tensor
analyzing powers.

(c) When the polarization of an outgoing particle (e.g. the ejectile b) is measured
while the incident beam is unpolarized it is defined as

�p′ = Tr(σρfin)

Tr(ρfin)
= Tr(σMρinM†)

Tr(ρfin)

= (2sa + 1)(2sb + 1)

(2sA + 1)(2sB + 1)

Tr(MM†σ)

Tr(MM†)
(6.10)

where the transformation properties of �p′ are those of the components of σ for
the spin system considered. If, e.g. the σ are the spin-1/2 Pauli operators �p will
be a vector with the Cartesian components px, py, and pz.

(d) More complicated cases are those where e.g. both particles in the entrance chan-
nel are polarized or the polarizations of both exit-channel particles (ejectile and
residual nucleus) are measured in coincidence (“spin correlations”) or those, in
which the influence of the polarization(s) in the entrance channel on the polar-
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ization(s) in the exit channel is measured (“polarization transfer coefficients”,
“triple-scattering parameters”.1

For a consistent description especially of more complicated spin states the
spherical representation is best suited. The two-particle spin tensors are defined
as

• for the entrance channel: τkqKQ = τkqτKQ, since in this case polarizations of
projectile and target are uncorrelated

• for the exit channel: τk′q ′K ′Q′ .

Lower-case indices are for projectile or ejectile, resp., upper-case ones for the
target or the recoil nucleus. The most general polarization observable therefore
depends on the polarization state (or on this state being measured!) of maximally
four particles, i.e. in spherical notation on eight indices:

τ
k′q ′K ′Q′
kqKQ . (6.11)

6.3 Types of Polarization Observables

Besides the most general notation (i.e. the spherical one with kq for the projectile,
KQ for the target, k′q ′ for the ejectile and K ′Q′ for the recoil (residual) nucleus) the
simplified Saclay description in the helicity coordinate system is being used: Xpqik

with X defining the observable (e.g. = A for analyzing power, C for correlations
etc.) [BYS78].

The pqik designate the ejectile, the recoil nucleus, the projectile (the beam) and
the target, respectively; their values are: s (“sideways”), n (“normal”), l (“longitu-
dinal”) for polarized particles and 0 for unpolarized ones. Thus the following types
of observables can be classified (besides the character and name of the observable
the nomenclature for the reaction, a typical Cartesian example and the spherical
definition is listed)

• Zero-spin observable
Unpolarized cross section X0000 or I0000:

A(a,b)B (dσ/dΩ)0 ∝ Tr
(
MM†) (6.12)

• One-spin observables

– Projectile analyzing power, e.g. A00i0 or Ay :

A(�a, b)B Tkq ∝ Tr(MτkqM†)

Tr(MM†)
(6.13)

1The term “triple scattering” stems from the beginning of polarization experiments when for the
production of polarized beams a primary nuclear reaction was needed, the second “scattering” was
the one to be investigated, and the third reaction served as an analyzer for the polarization of the
outgoing particles. With the advent of polarized-ion sources only “double scattering” was required.
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– Target analyzing power, e.g. A000k or Ay :

�A(a,b)B TKQ ∝ Tr(MτKQM†)

Tr(MM†)
(6.14)

– Outgoing polarization, e.g. pp000 or py′ :

A(a, �b)B tk′q ′ ∝ Tr(MM†τk′q ′)

Tr(MM†)
(6.15)

– Similarly for the recoil nuclei, e.g. p0q00:

A(a,b) �B tK ′Q′ ∝ Tr(MM†τK ′Q′)

Tr(MM†)
(6.16)

• Two-spin observables

– Polarization transfer coefficients (in the case of the NN interaction they
were also designated as “Wolfenstein parameters” A(=Kx′

z ),A′(=Kz′
z ),R(=

Kx′
x ),R′(= Kz′

x ),D(= K
y′
y )). Notation: Dp0i0, e.g. Cartesian K

y′
y , or spher-

ical: e.g. t
k′q ′
kq . Meaning: transfer of the projectile polarization to that of the

ejectile

A(�a, �b)B t
k′q ′
kq ∝

Tr(τk′q ′MτkqM†)

Tr(MM†)
. (6.17)

– Spin correlation coefficients: The correlation may be considered either in the
entrance or the exit channel (in the first case the polarizations of beam and
target are of course uncorrelated, in the latter case the are correlated by the
nuclear reaction and therefore must be measured in coincidence). The spin ten-
sors are direct products of the tensors of both particles and act e.g. for the
entrance channel in a (2sa + 1)(2sA + 1) dimensional spin space. Notation: In
the case of the NN interaction e.g. A00nn, Cartesian Amn with m,n = x, y, z

(not to be mixed up with the tensor analyzing power Aik) means an entrance-
channel correlation of the beam and target polarizations in y (= normal)
direction, or Cik,�m; more generally the spherical notation tkqKQ = t0000

kqKQ

and tk
′q ′K ′Q′ = t

k′q ′K ′Q′
0000 , respectively, may be used. For entrance-channel cor-

relations:

�A(�a, b)B tkq tKQ ∝ Tr(MτkqKQM†)

Tr(MM†)
(6.18)

with factorized input tensor moments and similarly (with correlated outgoing
tensor moments) for the exit channel.

• Three- and four-spin observables: Analogous expressions hold for “generalized

analyzing powers” t
q ′k′Q′K ′
qkQK using more general spherical (or Cartesian) tensors

τ
k′q ′K ′Q′
kqKQ .
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Fig. 6.1 Coordinate system
for the description of the
incident polarization as well
as construction of the y axis
with x along �y × �kin, y along
�kin × �kout, and z along �kin

6.4 Coordinate Systems

The notation of polarization tensors (tensor moments) and suitable coordinate sys-
tems have been strongly recommended in two international conventions:

• The Basel Convention was issued in 1960 [BAK61] and determines that in nu-
clear reactions with spin-1/2 particles the polarization should be counted positive
in the direction �kin × �kout. Assuming a positive analyzing power this positive po-
larization yields a positive left-right asymmetry (L-R).

• The Madison Convention [MAK71] and [DAR71] refers to spin-1 particles.
A right-handed coordinate system is assumed with the z direction being the mo-
mentum direction of the incident or outgoing particles, and where the y direction
is along �kin × �kout. Cartesian and spherical spin tensors and the corresponding
tensor moments are allowed and the components of the polarization are given by
pi , pij (Cartesian) or tkq (spherical), respectively, those of the analyzing pow-
ers Ai,Aij ; i, j = x, y, z (Cartesian) or Tkq , respectively. The extension to higher
spins is straightforward leading to an increasing number of indices for the Carte-
sian notation.

One consequence of this convention is that when using more than one detector each
detector obtains its own coordinate system with ŷ perpendicular to the respective
scattering plane. Figure 6.1 shows the situation for one system with polarized parti-
cles.

6.4.1 Coordinate Systems for Analyzing Powers

Although the (spin) observables to be measured depend only on the polar angle θ ,
the cross sections including these observables generally exhibit a dependence on
the azimuthal angle φ. This dependence enters via the need to introduce coordinate
systems, in which the detector positions as well as the polarization direction have to
be described. While for the vector polarization the ensuing azimuthal complexity is
a simple sinφ or cosφ dependence, e.g. for spin 1/2 with the Madison convention
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and parity conservation

dσ

dΩ
(θ,φ) =

(
dσ

dΩ
(θ)

)
0

[
1+ 1

2
pyAy(θ)

]

=
(

dσ

dΩ

)
0

[
1+ 1

2
pZAy(θ) sinβ cosφ

]
. (6.19)

For higher spins and other types of observables the description is more complex.
As an example the case of polarized spin-1 projectiles such as deuterons on unpo-
larized targets will be discussed. Writing out the expansion Eq. (6.9) in Cartesian
notation and considering parity conservation, as discussed below, we obtain (the
cross sections and analyzing powers depend only on θ and the energy)

dσ

dΩ
=
(

dσ

dΩ

)
0

[
1+ 3

2
pyAy + 1

2
pzzAzz + 2

3
pxzAxz

+ 1

6
(pxx − pyy)(Axx −Ayy)

]
. (6.20)

After introducing the β and φ dependences of the quantization (spin-symmetry) axis
(of the Madison convention [MAK71], see also Fig. 6.1) and parity conservation
explicitly we obtain

dσ

dΩ
=
(

dσ

dΩ

)
0

{
1+ 3

2
pZAy sinβ cosφ

+ pZZ

[
1

4
Azz

(
3 cos2 β − 1

)−Axz sinβ cosβ sinφ

− 1

4
(Axx −Ayy) sin2 β cos 2φ

]}
, (6.21)

where pZ and pZZ (often: p∗z or p∗ and p∗zz, also p̂Z and p̂ZZ , see also Eqs. (6.23)
for spin correlations) are the coordinate-independent maximum values along the
quantization (symmetry) axis of the polarization, e.g. of a beam coming from a
polarized-ion source or of a polarized target. We see that the maximum azimuthal
complexity is ∝ cos 2φ, which has to be taken into account for the placement of
detectors. An arrangement of four detectors �φ = 90◦ apart at one polar angle θ

is advantageous, because by taking differences and sums of count ratios of the four
detectors each of the four analyzing powers can be determined nearly independently
of all others [PET67].

6.4.2 Coordinate Systems for Polarization Transfer

For the determination of polarization-transfer coefficients the polarization of the
ejectiles from a primary reaction, induced with polarized particles, has to be mea-
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sured (“double scattering”). This is done using a (calibrated) analyzer reaction. For
this again the Madison convention is used, i.e. the direction of motion of the out-
going particles (along �kout in Fig. 6.1) is the new z′ axis for the second scattering.
However, this axis can be defined along the c.m. or the lab. direction. Then the coor-
dinate system for the analyzer reaction may be defined as before as a right-handed
system with

�x′ along �y′ × �z′, �y′ along �z× �k′out, and �z′ = �k′out. (6.22)

More detailed discussions on polarization transfer can be found in [OHL72, OHL73,
SPE83, SYD93, SYD98].

6.4.3 Coordinate Systems for Spin Correlations

In this case two—in principle independent—polarizations have to be considered,
because they can be prepared independently with arbitrary spin directions. With the
above prescription for both, two coordinate systems can be defined, which will be
rotated azimuthally against each other around the z axis, i.e. they are connected by
one azimuthal angle Φ . The azimuthal angles describing the detector positions in
both systems are therefore connected by trigonometric relations containing Φ .

As mentioned above the observables (such as spin-correlation coefficients) de-
pend only on the polar angle θ whereas the (polarized) cross section generally ac-
quires an azimuthal dependence via the introduction of coordinate systems. These
are in principle arbitrary but we follow Ohlsen ([OHL72]) and the Madison Con-
vention ([MAK71]). In Ref. [OHL72] the case of the azimuthal dependence of
spin-correlation cross sections is explained for spin-1/2 on spin-1 systems (see
also Ref. [PRZ06]). For the spin-1 on spin-1 case this is explained in [HGS10].
Figure 6.2 shows a possible coordinate system, in which the separately defined co-
ordinates of the projectile and target polarizations may be combined into a single
azimuthal dependence of the correlation cross section.

Generally, it is advisable to choose such a system that the description of a real ex-
periment is as simple and intuitive as possible. In this respect the Cartesian descrip-
tion is more intuitive than the spherical one. The description of polarization compo-
nents from polarized sources and polarized targets is best imagined in a space-fixed
coordinate system, in which the direction of the polarization vectors are described
by two sets of polar and azimuthal angles (βb,φb) for the incident beam polariza-
tion and (βt ,φt ) for the target. The orientation of the tensor polarization is fixed to
that of the polarization vector. As coordinate system here a set of axes x, y, and z

is chosen, where z is identical with the incoming beam direction (along �kin), y may
be vertically upward, and x, y, and z form a right-handed screw.

On the other hand, we need a scattering-frame system where a Y axis is defined
by the direction of �kin× �kout, the Z axis coincides with z, and with the X-axis again
forming a right-handed system together with Z = z. It is clear that this system is
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Fig. 6.2 Coordinate systems for spin-1 on spin-1 polarization correlation experiments. The po-
larization symmetry axes Sb for beam (b) and St for target (t) polarizations are defined in the
space-fixed coordinate system x, y, and z. The detector(s) are positioned at polar angles θ with
respect to the z = Z axis and at angles φ as measured clockwise from the x axis along z. Rela-
tive to the spin directions the azimuthal angles are φb − Φ and φt − Φ . The polar angles of the
polarizations βb and βt are not shown

different for each detector, the position of which must be characterized by a polar
angle θ and some azimuthal angle. We demand that for the parts of the cross section
with only one particle type (beam or target) being polarized (leading to analyzing
powers) we have the usual description of the azimuthal dependence on φ (with a
maximum azimuthal complexity of cos 2φ), see Sect. 6.4.1. Figure 6.2 shows the
relations between the two polarization-symmetry axes and the projectile-helicity
frame. The polarization components in the scattering frame of the incident beam are

pX = p̂Z sinβb cos(φb −Φ)

pY = p̂Z sinβb sin(φb −Φ)

pZ = p̂Z cosβb

pXY = 3

4
p̂ZZ sin2 βb sin 2(φb −Φ)

pYZ = 3

2
p̂ZZ sinβb cosβb sin 2(φb −Φ)

pXZ = 3

2
p̂ZZ sinβb cosβb cos(φb −Φ)

pXX − pYY = 3

2
p̂ZZ sin2 βb cos 2(φb −Φ)

pZZ = 1

2
p̂ZZ

(
3 cos2 βb − 1

)

(6.23)

and similarly for the target polarization

qX = q̂Z sinβt cos(φt −Φ)
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qY = q̂Z sinβt sin(φt −Φ)

qZ = q̂Z cosβt

qXY = 3

4
q̂ZZ sin2 βt sin 2(φt −Φ)

qYZ = 3

2
q̂ZZ sinβt cosβt sin 2(φt −Φ) (6.24)

qXZ = 3

2
q̂ZZ sinβt cosβb cos(φt −Φ)

qXX − qYY = 3

2
q̂ZZ sin2 βt cos 2(φt −Φ)

qZZ = 1

2
q̂ZZ

(
3 cos2 βt − 1

)
.

The quantities p̂i , p̂jk, q̂i , q̂jk are the (coordinate-system independent) vector and
tensor polarizations of beam and target as given by the occupation numbers of the
hyperfine Zeeman states in a rotationally-symmetric frame along the z axis.

In the spin-correlation cross section terms beam and target polarizations p and q

appear as products. Therefore typical azimuthal dependences and complexities arise
from combinations such as (and similarly for sin terms)

∝ cos(φb −Φ) · cos(φt −Φ)

∝ cos 2(φb −Φ) · cos(φt −Φ) (6.25)

∝ cos 2(φb −Φ) · cos 2(φt −Φ).

By using trigonometric relations it can be seen that these terms lead to azimuthal
dependences ∝ [cosMΦ]M=0,1,... and therefore to a maximum “complexity” of

cos 4Φ and also sin 4Φ (6.26)

e.g. for the correlation coefficient Cxy,xy . For this coefficient the product
sin 2(φb −Φ) · sin 2(φt −Φ) may be transformed into

1

2
(cos 4Φ + 1) sin 2φb sin 2φt

− 1

2
(cos 4Φ − 1) cos 2φb cos 2φt

− 1

2
sin 4Φ(cos 2φb sin 2φt + cos 2φt sin 2φb). (6.27)

This complexity has to be met by a sufficiently fine-grained detector arrangement. It
is clear that substantial simplifications arise with the choice of special polarization
directions. If e.g. in an experiment both polarization vectors point in the x direction
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then with φb = φt = 0 only a simple φ dependence

∝ (1− cos 4Φ) (6.28)

of the cross section results for this correlation coefficient. Of course the different φ

dependences have to be established for all coefficients. In Chap. 19.2.1 the complete
set of terms entering the general cross section of spin-1 on spin-1 correlations is
given. For identical particles some terms are redundant.

6.5 Structure of the M Matrix and Number of “Necessary”
Experiments

A nuclear reaction may be considered “completely measured”, when all elements of
the M matrix have been determined uniquely. How many independent polarization
experiments will be necessary to achieve this goal depends on the spin structure
of the reaction and can be derived theoretically. A number of investigations into
this question has been published, see e.g. Refs. [HOF66, FIC67, KOE68, SIM74]
and the conclusions were that in the cases cited no measurement of e.g. four-spin
observables was necessary. An example for an experimental program, by which
the “complete” determination of all M-matrix elements was attempted was the NN
program at the Saclay SATURNE facility. At present the complete set of NN data
is maintained by CNS DAC [GWU11] e.g. for use with the phase-shift analysis
program SAID [SAID13]. Several other phase-shift analyses of the NN systems are
maintained, e.g. at Nijmegen [NNO13].

Because “complete” data sets do not exist for most reactions another approach
has been taken that consists in a least-squares fitting procedure of the incomplete
set of data of certain reactions. Examples are few-body reactions such as the two
DD reactions at very low energies by a multi-channel R-matrix or single-channel
T -matrix approach (see e.g. Refs. [HGS10, HGS12].)

In practice—e.g. due to experimental uncertainties—some redundancy is used,
i.e. more observables than minimally required will have to be measured. In addition
not all M-matrix elements are independent since symmetries impose restrictions
and create relations between them:

• Rotational symmetry (conservation of angular momentum):
The outcome of a measurement of a nuclear reaction is independent of the

orientation of the coordinate system or of the orientation of an experiment in a
given coordinate system.

• Mirror symmetry (Parity conservation—not for the weak interaction): The out-
come of a measurement of a nuclear reaction is the same as that of a reaction
reflected at the origin.

• Time-reversal symmetry: Since the time-reversal operator is “anti-unitary” there
is no conserved quantity here, but relations exist between the observables of the
forward and the backward reactions as reversal of motion with suitable applica-
tion to the spins of the particles involved).
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In principle the behavior of polarization observables under symmetry transforma-
tions can be derived by considering each of its components with respect to a given
(Cartesian) coordinate system as a product of the corresponding tensor and the unit
vector in the coordinate direction. Therefore not only the behavior of the spin tensor
itself but also that of the coordinates have to be considered. In the helicity coordinate
system the coordinates behave differently under the following two transformations
by the parity operator P and time-reversal operator T

x y z

Parity P: −x y −z

Time reversal T: x y z

, (6.29)

i.e. only ŷ = �kin×�kfin

|�kin×�kfin| is invariant under the parity transformation whereas all compo-

nents of the Cartesian spin operator S are invariant. (This follows from the fact that
S2 commutes with P and from the commutation relations S × S = iS.) Therefore
only Sy will be P invariant. This means that in a nuclear reaction with a parity-
conserving interaction only the polarization component py′ �= 0 can be produced
in the exit channel or the only component of an analyzing power �= 0 will be Ay .
On the other hand the measurement of components such as Ax or Az �= 0 is very
suitable in the search for a parity violation.

From the parity behavior of S not only the parity behavior of higher-rank ob-
servables (for spins > 1/2) but also of the corresponding tensor moments can be
obtained. Parity conservation imposes the condition on analyzing tensor moments
(analyzing powers):

Tk−q = (−1)k+qTkq . (6.30)

Like for spin-1/2 systems due to parity conservation the number of observ-
ables for larger spins will also be reduced. For S = 1 only one vector analyz-
ing power Ay and the three tensor analyzing powers Azz,Axz and Axx − Ayy

or iT11, T20, T21 and T22, resp., can be �= 0. Third-rank Cartesian analyzing pow-
ers thus

Axxx =Azzz =Azzx =Axxz =Ayyz =Axyy = 0. (6.31)

As a rule: the sum of the number of indices x and z must be even for the observable
to exist [OHL72].

For the generalized analyzing powers rotation invariance together with parity
conservation yield the following relation [KNU72]

τ
k′q ′K ′Q′
kqKQ (p3, θ3, φ3;p4, θ4, φ4)

= (−)

4∑
j=1

kj [
τ

k′q ′K ′Q′
kqKQ (p3, θ3,−φ3;p4, θ4,−φ4)

]∗
, (6.32)
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which simplifies for the coordinate system introduced above, in which φ3 = 0 and
φ4 = π

τ
k′q ′K ′Q′
kqKQ = (−)

4∑
j=1

kj [
τ

k′q ′K ′Q′
kqKQ

]∗
. (6.33)

This means that all polarization-transfer coefficients are either real or imaginary.
From the polarization of the outgoing particle 3

tk′q ′ = τ
k′q ′00
0000

τ 0000
0000

, (6.34)

also follows

tk′q ′ = (−)k
′
t∗k′q ′ . (6.35)

For k′ = 1 (vector polarization) only Im (t11)=− 1
2

√
3py′ is �= 0, i.e. the polariza-

tion vector points perpendicular to the scattering plane.
In Refs. [KNU72, OHL81] also the case of a reaction with three particles in the

exit channel is discussed. In this case in general no restrictions of the number of
observables by parity conservation apply. Exceptions are:

• The three particle momenta and the beam form a plane. The system then behaves
like a two-particle reaction.

• Only one particle is detected (this is a kinematically incomplete measurement, in
which averaging over the momenta of the unobserved particles takes place). Here
again the transfer coefficients will be either purely real or purely imaginary thus
reducing their number by a factor 2.

Time-reversal invariance leads to relations between observables of the forward and
the backward reaction. One such relation is the principle of “detailed balance”,
which requires equality (up to phase-space factors) of the cross sections of both.
For polarization observables similar relations result, e.g. the equality of the vector
analyzing power for the forward reaction with polarized projectile a and the exit
channel polarization of the ejectile b in the backward reaction produced with an
unpolarized beam (or target)—which normally has to be measured in a second scat-
tering. Since in elastic scattering projectile a and ejectile b are identical a double
scattering experiment will yield A2

y absolutely (but not the sign of Ay ). A widely

used example for an analyzer reaction for protons is 4He(p,p)4He.
Reference [OHL72] gives (for Cartesian observables) a detailed description of

the formalism especially for the polarization-transfer and spin-correlation coeffi-
cients and (counting) rules for the restrictions imposed by parity conservation and
time-reversal invariance. Systems with the spin structures

• Polarization transfer:

– �12 +A→ �12 +B

– �1+A→ �12 +B
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– �12 +A→ �1+B

– �1+A→�1+B

• Spin correlations:

– �12 + �12 → b or B

– �1+ �12 → b or B

– �1+ �1→ b or B

are discussed there.

6.6 Examples

In the following only a few examples for the observables of important spin systems
will be discussed.

6.6.1 Systems with Spin Structure 1/2 + 0 −→ 1/2 + 0

Examples 4He(p,p)4He, 4He(n,n)4He, 1H(p,p)1H. The form of the transfer
matrix for spin structure 1/2+ 0−→ 1/2+ 0 is

M(kin,kfin)=A+B(σ ŷ) (6.36)

with A = non-spinflip amplitude, B = spinflip amplitude. The description will be
in right-handed coordinate systems either in the c.m. or the lab. system. Table 6.1
shows the possible (and partly redundant) observables of these systems. For elastic
scattering there is a substantial reduction of the number of independent observables
by:

• Parity conservation (P): The expectation values of some observables vanish,
e.g. the longitudinal analyzing power Az;

• Time-reversal invariance (T): T connects observables of the forward and back-
ward reaction.

With these symmetries the number of independent observables (experiments) is re-
duced from 15 possible to 3 independent “true” polarization experiments+ the mea-
surement of the differential and the total cross sections (see Table 6.2). The number
of complex amplitudes is N = 2, thus the number of real amplitudes is 2N − 1= 3,
equal to the minimum number of necessary independent polarization experiments.
Of these there are at most 4 (including the unpolarized cross section) allowing for
an additional relation between the observables. After identifying the transfer coef-
ficients in the lab. system with the “Wolfenstein” parameters a well-known relation
between different observables reads

p2
y′ +R2 +A2 = 1. (6.37)
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Table 6.1 Table of the observables of a spin system 1/2+ 0−→ 1/2+ 0

Ejectile Beam

1 px py pz

I (θ) |A|2 + |B|2 2 Re(A∗B)

Io IoAy

px′ (θ) |A|2 − |B|2 2Im(A∗B)

IoK
x′
x IoK

x′
z

py′I (θ) 2Re(A∗B) |A|2 + |B|2
Iopy IK

y′
y

pz′I (θ) −2Im(A∗B) |A|2 − |B|2
IoK

x′
z IoK

z′
z

Table 6.2 Reduction of the
number of independent
observables by parity
conservation (P) and
time-reversal invariance (T)

Beam unpolarized Beam polarized

Differential cross section ( dσ
dΩ

)0(1) Ai(3)

P︷︸︸︷
(1)

↗

T

↙

Ejectile polarization pi(3)

P︷︸︸︷
(1) K

j ′
i (9)

P︷︸︸︷
(5)

T︷︸︸︷
(2)

6.6.2 Systems with Spin Structure 1/2 + 1/2 −→ 1/2 + 1/2

Examples are the NN system, reactions such as 3He(p,p)3He, 3H(n,n)3H, etc.
A very detailed description of the formalism of elastic scattering of these systems
has been given in Ref. [BYS78] where the connection between observables and
M-matrix elements is made. Table 6.3 lists all possible polarization observables
for this spin system. Thus in principle there are 255 possible polarization exper-
iments + measurement of the unpolarized differential cross section (+ measure-
ment of the total cross section). For elastic scattering parity conservation and time-
reversal invariance will reduce this number to 25 for identical particles (such as in
p–p scattering), and to 36 linear independent experiments for non-identical parti-
cles.

The form of the transfer matrix for systems with spin structure 1/2+ 1/2 −→
1/2+ 1/2: (elastic scattering) is
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Table 6.3 Observables for the spin structure 1/2 + 1/2 −→ 1/2 + 1/2 with the designation of
the classes of experiments as B for “beam”, T for “target”, u for “unpolarized”, p for “polarized”
are Xpqik with p, q , i, and k, each with values s, n, or l (polarized) or o (unpolarized) with
the indices k for the target, i for the beam, q for the recoil nucleus, and p for the ejectile. �

stands for “longitudinal”, n for “normal” (along the scattering normal) and s (or m) for “sideways”
(perpendicular to � and n)

Observable Bu,T u Bp,T u Bu,Tp Bp,Tp

Differential cross section Ioooo(1) Aooio(3) Aoook(3) Aooik(9)

Ejectile polarization ppooo(3) Dpoio(9) Kpook(9) Mpoik(27)

Recoil polarization poqoo(3) Koqio(9) Doqok(9) Noqik(27)

Polarization correlation Cpqoo(9) Cpqio(27) Cpqok(27) Cpqik(81)

M(�kin, �kfin)= 1/2
[
(a + b)+ (a − b)(σ1n)(σ2n)+ (c+ d)(σ1m)(σ2m)

+ (c− d)(σ1l)(σ2l)+ e(σ1 + σ2)n

+ f (σ1 − σ2)n
]
.

Here σi are the (Cartesian) Pauli spin operators and m, n, l the basis vectors of a
right-handed c.m. coordinate system with:

l= �kfin + �kin

|�kfin + �kin|
m= �kfin − �kin

|�kfin − �kin|
n= �kfin × �kin

|�kfin × �kin|
. (6.38)

In pp scattering, after considering parity conservation, time-reversal invariance and
the Pauli principle there are N = 5, in np scattering N = 6 invariant, independent
complex amplitudes (of a total of 16 possible ones).

Thus in a complete experiment 2N − 1 real quantities have to be determined by
at least as many independent experiments:

• for pp: 9
• for np: 11.

6.6.3 Systems with Spin Structure �1
2 + �1 and Three-Nucleon

Studies

This system is in principle very important because the three-nucleon system N + d

is—after the NN system—the most important system for the test of fundamental in-
teractions such as meson-exchange or effective-field theory NN input into Faddeev-
like calculations, including tree-body and Coulomb forces. However, a very limited
number of different polarization observables has been measured to date. These are
nucleon and deuteron vector analyzing powers Ay and iT11, as well as deuteron an-
alyzing powers T2q of elastic scattering, and analyzing powers of the breakup reac-
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tions N + d→ 3N . Observables of elastic scattering of the system: polarized spin-
1/2 on unpolarized spin-1 particles including a phase-shift parametrization have
been discussed in Ref. [SEY69].

6.6.4 Systems with Spin Structure �1 + �1 and �1
2 + �1

2
and the Four-Nucleon Systems

The four-nucleon system is the smallest nuclear system with a rich structure con-
sisting of excited states and different channels with several clusterings 1+ 3 as well
as 2 + 2. Its importance reaches from theoretical approaches using again the fun-
damental NN interactions via Faddeev-Yakubowsky equations and including three-
nucleon and four-nucleon forces as well as the Coulomb interaction, to applications
in fusion-energy research. Polarization effects in these reactions are relatively large,
and a significant number of different observables has been collected, especially at
low (fusion and astrophysically relevant) energies. In Sect. 19.3 the role of spin
correlations of the D+D reactions in fusion energy will be discussed.

6.6.5 Practical Criteria for the Choice of Observables

In practice more sets of experiments than minimally necessary are chosen for the
following reasons:

• Consistency checks provided by relations between observables.
• Resolution of possible discrete ambiguities caused by the bilinear form of the

equations relating the M matrix to the observables.
• Unavoidable experimental errors require that a fit procedure with more observ-

ables than fit parameters (matrix elements, phase shifts, etc.) is necessary.

Criteria for the selection of suitable polarization observables:

• Redundancy: observables should be linearly independent of each other (of course
they depend on each other via different combinations of matrix elements).

• Technical realizability.
• Availability e.g. of a polarized target.
• Ease of orientation of the polarization in the beam and target into three orthogonal

directions.
• Avoidance of the complicated three or four-spin observables.
• Avoidance of measuring a longitudinal polarization component in spin transfer

(which needs spin rotation by magnetic field).
• “Sensitivity” of all observables to the amplitudes, small covariances between dif-

ferent observables (this may be important when determining reaction amplitudes
in a fit procedure).
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The measured (polarization) observables have to be compared to predictions of
some (preferably the best available) theory for the description of a nuclear reac-
tion. As an “interface” between theory and experiment a single observable could
be used. When more (and different) observables have been measured it is better to
extract common basic quantities such as the transfer-matrix elements, the S or T

matrix elements or—for elastic scattering—a related parametrization such as phase
shifts for comparison with the theory. This would also permit the prediction of un-
measured quantities from experimental data alone or in comparison with the theory.
In the following the partial-wave analysis will be discussed.

6.7 Exercises

6.1 Show how an (�� · �s) force causes a left-right asymmetry of the cross section if
the incident spin-1/2 beam is (partially or fully) polarized.

6.2 Likewise show how an (�� · �s) force causes an unpolarized spin-1/2 beam to
become polarized.

6.3 Derive the figure of merit, defined as some polarization quantity (such as a
beam or target polarization, an analyzing power etc.) squared times an intensity
related quantity (such as a cross section, a beam intensity, or the density of
polarized nuclei in a target etc.), e.g. p2

y · I , by the requirement of minimal
measurement time to reach a given experimental precision.

6.4 We define a right-handed coordinate system for reactions with polarized spin-
1/2 projectiles such that

ẑ= �kin

|�kin|
, ŷ = �kin × �kout

|�kin × �kin|
, and x̂ = ŷ × ẑ. (6.39)

Show that under parity conservation only the component Ay �= 0 can exist
whereas Ax and Az vanish.

6.5 Explain why in the 3H( �d,n)4He reaction at Elab = 107 keV, which is com-
pletely dominated by an s-wave, Jπ = 3/2+ resonance in 5Li, Ay = 0, and
only tensor analyzing powers Aik;i,k=x,y,z �= 0 may exist.

6.6 Why is a similar behavior true for the 3He( �d,p)4He reaction at Elab =
430 keV? Which differences between the two mirror reactions would you nev-
ertheless expect because of the different lab. energies?
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Chapter 7
Partial Wave Expansion

Especially at low energies the partial-wave expansion of the observables is useful.
One advantage is that—since the Legendre functions are eigenfunctions of the angu-
lar momentum—the influence of and dependence on different angular momenta in
the reaction can be studied. When dealing with the nuclear part of the interaction—
due to the short range of nuclear forces—the expansion can be truncated after a few
terms; the centrifugal barrier prevents higher angular momenta from contributing.
The problem with incident charged particles is that the Coulomb interaction, due to
its long range, requires a very large number of partial waves.

7.1 Neutral Particles

The most general expansion for two-particle reactions between neutral particles was
published by Welton [WEL63]. It describes the (spherical) tensor moments of the
exit channel as function of the tensor moments of the entrance channel, as prepared.
It includes the case of unpolarized cross sections (as discussed in Chap. 8) as a spe-
cial case. By Heiss [HEI72] it was extended to elastic scattering of charged reaction
partners and by Hofmann, Aulenkamp, Nyga in addition to the case of identical par-
ticles. Here the final result of Welton (without that symmetrization) will be given
with the modification that the definition of the tensor moments follows that of Lakin
[LAK55] and therefore complies with the Madison Convention [MAK71]. In order
to avoid confusion with expressions of the R-matrix theory [LAN58], here the R

and R of Welton have been renamed T and T , the tensor moments are designated
as introduced in the present text: tkq,KQ instead of tqγ,QΓ for the exit channel,
tk′q ′,K ′Q′ instead of tq ′γ ′,Q′Γ ′ for the entrance channel.

tkq,KQ = (2kin)
−2(ı̂Î )1/2

×
∑⎧⎨

⎩
i I s1
k K t

i I s2

⎫⎬
⎭
⎧⎨
⎩

i′ I ′ s′1
k′ K ′ t ′
i′ I ′ s′2

⎫⎬
⎭
⎧⎨
⎩

l1 s1 J1
l t L

l2 s2 J2

⎫⎬
⎭
⎧⎨
⎩

l′1 s′1 J1
l′ t ′ L

l′2 s′2 J2

⎫⎬
⎭
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× 〈l1l200|l0〉〈l′1l′200
∣∣l′0〉〈lt0Λ|LΛ〉

× 〈l′t ′0Λ′
∣∣LΛ′

〉〈kKqQ|tΛ〉〈k′K ′q ′Q′∣∣t ′Λ′〉

× T J
π1
1 T J

π2
2
∗
DL

Λ′Λ(φ, θ,0)

× (ı̂′Î ′)−1/2

× tk′q ′,K ′Q′ , (7.1)

where the meaning of the different symbols is as follows:

• Primed quantities: entrance channel, unprimed ones: exit channel.
• Alternatives in each channel are distinguished by 1 and 2.
• Particle spins: i, I, i′, I ′.
• Channel spins: s, s′.
• Orbital angular momenta: �, �′, total angular momentum: J (the only conserved

angular momentum).
• Rank and component of the tensor moments: k, q and K,Q.
• Sums are over all indices except k,K,q,Q; I, i, I ′, ı′.
• Î means 2I + 1.
• Symbols in wavy brackets are the 9j symbols (see [BRI71] and Sect. 22.3).
• Symbols like 〈l1l200|l0〉 are the Clebsch-Gordan coefficients (see [BRI71] and

Sect. 22.3).
• The matrix elements T J

π1
1 and T J

π2
2 , resp., are defined in a representation with

the asymptotically good quantum numbers as

T J
π1
1 = 〈α′�′s′∣∣T |α�s〉, (7.2)

where T = S − 1 defined in spin space with S being the usual S-matrix.

Already from the abbreviated form

t ∝
∑
1,2

B(1,2)T1T
∗
2 DL

ΛΛ′ · t ′, (7.3)

some general conclusions can be derived:
The B(1,2)T1T

∗
2 DL

ΛΛ′ are components of the generalized analyzing powers

T
kq,KQ

k′q ′,K ′Q′ . By interchanging indices 1↔ 2 one finds that B(2,1)= (−)k+K+k′+K ′ ·
B(2,1) and

t ∝
∑
1,2

1

2

[
T1T

∗
2 B(1,2)+ T ∗1 T2B(2,1)

]
DL

Λ′Λ · t ′

=
∑
1,2

1/2
[
T1T

∗
2 B(1,2)+ (−)k+K+k′+K ′T ∗1 T2B(1,2)

]
DL

ΛΛ′ · t ′. (7.4)
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For

k +K + k′ +K ′ =
{

even
odd

}
only

{
Re
Im

}(
T1T

∗
2

)
(7.5)

will appear. If e.g. only the incident beam is polarized and no outgoing polarization
is measured (k′ = 1, k =K =K ′ = 0), the analyzing power is

Ay ∝ iT11 ∝ Im
(
T1T

∗
2

)
. (7.6)

Thus polarization effects of odd rank (e.g. the vector analyzing power or the vector
polarization) vanish if

• the matrix elements are purely real. This will be the case e.g. in Born approxima-
tion with a real potential;

• only a single matrix element contributes: T1T
∗

1 − T ∗1 T1 = 0. This is the case for
an isolated resonance with only one value of the orbital angular momentum (if no
tensor force couples angular momenta of equal parity) and with no direct back-
ground contribution. An example is the 3/2+ resonance of the 3H(d,n)4He reac-
tion at Ed = 107 keV;

• all matrix elements have the same phase: with T1 = r1e
iφ, T2 = r2e

iφ : T1T
∗
2 =

r1r2 = real;
• only one value of � exists and is zero;
• only one intermediate state with J1 = J2 = 0 or 1/2 exists. In the last two

cases the angular distribution of the unpolarized cross section is isotropic: from
�′1 = �′2 = �= �+ t (= 0)= L= 0→ σ0 is isotropic;

• there is no interaction distinguishing (for one �) between the two possible dif-
ferent values of J . A vector �� · �s force is e.g. necessary for producing vector
polarization or analyzing power, resp., otherwise the above condition T1 �= T2 is
not fulfilled.

Some additional conclusions can be drawn:

• Parity conservation reduces the number of possible tensor moments.
Example: The outgoing tensor moment t00 = 0 with incident tensor moment t ′10,
polarized in the z direction, and therefore the (longitudinal) analyzing power of
a parity conserving reaction Az ∝ T10 = 0. This is due to the one property of
the CG coefficient 〈�′1�′200|�′0〉, which is only �= 0 if �′1 + �′2 + �′ is even, and
analogously for 〈�1�200|�0〉. Parity conservation requires that �′1+�′2+�1+�2 be
even, resulting in L= � and �+ �′ = even. However, with k′ = 1, q ′ = 0, k = q =
0 and therefore t ′ = 1, L= �′ + t ′ we have �= �′1± 1 and �+ �′ = 2�′ ± 1= odd
in contradiction to the above.

• The complexity (defined as the maximum possible order L of the functions DL
Λ′Λ

or YΛ
L or P Λ

L ) of angular distributions can be obtained as

−Lmax ≤ J1 + J2

−Lmax ≤ �1 + �2 + k+K

−Lmax ≤ �′1 + �′2 + k′ +K ′
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• It is evident that for the unpolarized cross section t00,00 Λ = Λ′ = 0, i.e. there
is no φ dependence and the D00 are reduced to simple Legendre Polynomials
PL(cos θ), a few of which are depicted in Fig. 4.11.

Especially for s waves (�1 = �2 = L = 0) the angular distribution becomes
isotropic. This also holds for J1 = J2 = 0 or = 1/2. Inspection of the relevant 9j
symbol shows that, as in the case of J1 = J2 = 1/2, �= L= 0 is the maximum
possible value: ⎧⎨

⎩
�1 s1 J1
� t L

�2 s2 J2

⎫⎬
⎭=

⎧⎨
⎩

�1 s1 0
� 0 �

�2 s2 0

⎫⎬
⎭ . (7.7)

7.2 Charged Particles

The case including the Coulomb interaction in elastic scattering has been treated
by Heiss [HEI72] in such a way that instead of one expression for an observable
there are now three: the pure nuclear-interaction term, the pure Rutherford term,
and an interference term between both. This last one is—due to the long range of the
Coulomb force—the one, which may cause problems when truncating higher partial
waves where they should be included up to very high � values (corresponding to a
large screening (or cut-off) radius for the interactions) while for the pure nuclear
term very few low-� partial waves may suffice. The pure Coulomb term is written
down in closed form—it is just the Rutherford scattering, at least when dealing with
the monopole term of the Coulomb force, i.e. between point charges.

The most general equation relating outgoing tensor moments with incident ones
for the scattering of charged particles thus has three parts:

tkq,KQ = (2kin)
−2
{

4πδαα′δiI,i′I ′
∣∣Cα(θ)

∣∣2∑B1
(
kqKQ; k′q ′K ′Q′;LΛΛ′

)

+ (4π)1/2δαα′δiI,i′I ′
∑

B2
(
�s2kqKQ;�′s′2k′q ′K ′Q′;LΛΛ′; I)

× [iC(θ)T ∗ + (−)k+k′+K+K ′(iC(θ)T ∗
)∗]

+ 1

2

∑
B4
(
�1s1�2s2kqKQ;�′1s′1�′2s′2k′q ′K ′Q′;LΛΛ′;J1J2

)

× [(T1T
∗
2

)+ (−)k+k′+K+K ′(T1T
∗
2

)∗]}
DL

ΛΛ′(φ, θ,0)tk′q ′,K ′Q′ . (7.8)

The sums run over all arguments of the B coefficients; the B coefficients are defined
as the Rutherford term

B1 = δkk′δKK ′
〈
kKq ′Q′

∣∣LΛ
〉〈
kKqQ

∣∣LΛ′
〉
, (7.9)

the interference term
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B2 = (−)s2+s′2−2I Î k̂′K̂ ′
(
�̂�̂′ŝ2ŝ

′
2

)1/2

×
∑
t t ′s

(
t̂ t̂ ′
)1/2

⎧⎨
⎩

i I s

k K t

i I s2

⎫⎬
⎭
⎧⎨
⎩

i I s

k′ K ′ t ′
i I s′

⎫⎬
⎭W(stI�; s2L)W

(
st ′I�′; s′2L

)

× 〈t�Λ′0∣∣LΛ′
〉〈
t ′l′t ′Λ0

∣∣LΛ
〉〈
kKqQ

∣∣tΛ′〉〈k′K ′q ′Q′∣∣t ′Λ〉, (7.10)

and the pure nuclear term (the Welton formula)

B4 =
(

ı̂ Î

k̂K̂

)1/2(
ı̂′Î ′

k̂′K̂ ′

)1/2

F
(
�1�2s1s2J1J2LΛ′; kKqQ

)

× F
(
�′1�′2s′1s′2J1J2LΛ; k′K ′q ′Q′) (7.11)

with

F(�1�2s1s2J1J2LΛ; kKqQ) = (�̂1�̂2ŝ1ŝ2Ĵ1Ĵ2k̂K̂)1/2(−)�1+L

×
∑
�t

〈l1l200|�0〉〈lt0Λ|LΛ〉〈kKqQ|tΛ〉

×
⎧⎨
⎩

i I s1
k K t

i I s2

⎫⎬
⎭
⎧⎨
⎩

�1 s1 J1
� t L

�2 s2 J2

⎫⎬
⎭ . (7.12)

The quantities in these equations are as in Eq. (7.1). In addition,

C(θ)= (4π)−1/2ηS csc2
(

θ

2

)
exp

{
−2iηS ln

[
sin

(
θ

2

)]}
(7.13)

is the Coulomb (Rutherford) amplitude describing the long-range part of the inter-
action, and the W coefficients are Racah coefficients equivalent to 6j symbols (see
[BRI71] and Sect. 22.3). The formalism of Welton/Heiss has been transformed re-
peatedly into computer programs to compute the relations between incoming and
outgoing spin-tensor moments as functions of the T -matrix elements as well as for
fitting these tensor moments to observables. Details can be found in Ref. [HGS12].

7.3 Exercises

7.1. Verify that for a reaction with neutral unpolarized particles in the entrance
channel the unpolarized differential cross section has the form given in Chap. 8
and discuss its angular complexity.

7.2. Do the same for the vector analyzing power of a reaction with Spin-1/2 pro-
jectiles on a spin-zero target.

7.3. What will be the modifications with identical particles in the entrance channel?
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7.4. (a) Rework the conclusions between Eqs. (7.5) and (7.7), drawn from the gen-
eral formula Eq. (7.1).

(b) Apply this to case of one (dominant) s-wave matrix element plus one
(weaker) p-wave element. Show how a polarization observable such as the
vector analyzing power (which vanishes for pure s-waves) may be more
sensitive to smaller contributions in the presence of a strong one than the
differential cross section.
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Chapter 8
Unpolarized Cross Sections

8.1 General Features

In the following some formal features of unpolarized cross sections will be dis-
cussed (for more reading see e.g. Refs. [NEW66, GOL64, ROD67, MOT65, JOA83,
SEG83] and many other common textbooks cited in Chaps. 1 and 4). In the simplest
case we deal with spinless particles and purely elastic scattering. Modifications arise
in the following cases:

• If inelastic and other absorption channels are open the differential cross section
contains a term e2iη� − 1 instead of e2iδ� − 1 (the phase becomes complex, see
Sect. 8.2). For heavy-ion reactions with fusion and other exit channels this expres-
sion is just a transmission coefficient T�SJ , that may be calculated in the frame-
work of the optical model or simplified by sharp-cutoff models, see Chap. 13 and
Sect. 11.6.2.

• If the spins of the projectile (I1) and target (I2) nuclei are �= 0, the particles are
unpolarized, and no polarization is measured, then 2�+ 1 has to be replaced by

(2J + 1)

(2I1 + 1)(2I2 + 1)
(8.1)

and δ� by δ�SJ , likewise also η�. S is the channel spin, coupled from I1 and I2 and
has the values |I2− I1| ≤ S ≤ I2+ I1. The cross section terms have to be summed
over �, S, and J where J is the total angular momentum coupled from S and �.
The formula (8.1) is derived by counting the relative number of spin channels
contributing to the number of total angular-momentum states.

• In the case of identical particles exchange symmetry (see Sect. 3.4) requires that
the wave functions must be properly (anti-)symmetrized. With I1 = I2 = I and
the channel spin S we have 0≤ S ≤ 2I and the integrated cross section is

σJ = 4π

k2

(2J + 1)

(2I + 1)2

∑
�,J

[
1+ (−1)�+S

]
T�SJ . (8.2)
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• The general case of spin-polarized particles is treated in detail in Chaps. 5 and 6.

In this chapter we return to the simplest case. In the framework of partial-wave
expansions the differential cross section reads

dσ

dΩ
= |f |2 = ff ∗ = 1

k2

∣∣∣∣∣
∞∑

�=0

(2�+ 1)
(
e2iδ� − 1

)
P�(cos θ)

∣∣∣∣∣
2

= 1

k2

∞∑
�=0

(2�+ 1)

∞∑
�′=0

(2�+ 1)
(
2�′ + 1

)
ei[δ�(k)−δ�′ (k)] sin δ� sin δ�′P�P�′

= 1

k2

�+�′∑
L=|�−�′|

∞∑
�′=0

∞∑
�=0

(2�+ 1)
(
2�′ + 1

)〈
��′00

∣∣L0
〉2

ei[δ�(k)−δ�′ (k)]

× sin δ� sin δ�′PL(cos θ). (8.3)

Here the relation

P�P�′ =
�+�′∑

L=|�−�′|

〈
��′00

∣∣L0
〉2

PL(cos θ) (8.4)

was used.
From the differential cross section the integrated cross section is obtained by

integration over the entire solid angle. Assuming φ independence (e.g. when no
spin polarization is involved) this results in

σint = 2π

∫
dσ

dΩ
sin θdθ

= 4π

k2

∞∑
�=0

(2�+ 1) sin2 δ� =
∞∑
�

σ� (8.5)

after using the relation
∫ +1
−1 P�(cos θ)P�′(cos θ)d(cos θ)= 2

2�+1δ��′ . The integrated
cross section is thus an incoherent sum over partial cross sections belonging to �,
and they show a weighting factor of 2�+ 1. The maximal integrated partial cross
section such as in the maxima of resonances, for which δ�(k) = (n + 1/2)π ; n =
0,±1,±2, . . . increases linearly with �

σ�,max(k)= 4π

k2
(2�+ 1). (8.6)

On the other hand the contribution of higher �-values (at least for short-range
potentials) is limited by the effects of the centrifugal barrier. Semi-classically, for a
“range” d of the potential only partial waves can contribute, for which

�≤ kd. (8.7)
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Fig. 8.1 Increase of the
integrated cross section for
neutrons with � for different
reaction mechanisms. �—in a
semi-classical picture—may
be assigned to increasing
interaction distances

In a quantum-mechanical picture this follows from the behavior of the Bessel func-
tions, see Fig. 10.7. The first maximum of

j�(kr) is located at r0 ≈ �/k. (8.8)

For small r

j�(kr)∝ r� i.e. for d ≤ �/k, j�(kr) and δ� (8.9)

are small. This upper limit for �max, often: �gr (gr for “grazing”), is only reached
in reactions occurring at the potential surface i.e. in direct processes. In compound
nuclear processes, which proceed rather in the nuclear center the upper limit for �

is lower (�crit). For dissipative processes like “incomplete fusion” or “deep-inelastic
scattering” �max is between �crit and �gr. This behavior as function of � is depicted
in Fig. 8.1. Such considerations apply especially for heavy-ion reactions with strong
absorption as long as the wave aspects are insignificant, see e.g. [NOE76].

For reactions that pass through a definite intermediate state (e.g. an isolated res-
onance in the interaction of particles without spins) a special conclusion can be
drawn. The CG-Koeffizient 〈��′00|L0〉 (see Sect. 22.3) has the property of being
�= 0 only when �+ �′ + L is even. This means here: Because �= �′ is L even and
because L can only assume even values from |� − �′| . . . � + �′ in the Legendre
expansion with Lmax = 2�, the angular distribution contains only even Legendre
polynomials, which are symmetric around π/2. � = J of the intermediate state is
given by half of the “complexity value” L of the angular distribution. This helps in
the determination of the total spin J of isolated resonances in nuclear and particle
physics (example: the � resonance, see Sect. 11.5.2 and Chap. 5).

8.2 Inelasticity and Absorption

Inelastic processes are all those processes that are non-elastic, i.e. those, which take
particle flux out of the direct elastic channel. Among these are all reactions in the
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narrower sense (thus without direct elastic scattering, shape-elastic scattering), but
also compound-elastic scattering, which goes via intermediate states, and also in-
duced nuclear fission and—at higher energies—the production of particles above
the corresponding thresholds. For these processes a few general statements may be
made without having to consider details of the reaction mechanism.

The flux of the incoming particles (entrance channel α) is normally distributed
among several exit channels (β). We shall use the usual notation for reactions η�,β ≡
η�

α , for purely elastic scattering η� ≡ η�,α , where η is the scattering function defined
above, and S is the equivalent S-matrix. The S-matrix has a few properties that can
be useful here. E.g. the following facts apply

• Unitarity:
∑

β |S�
β,α|2 = 1

• Reciprocity (under time-reversal invariance): S�
α,β = S�

β,α .

Applied to η this implies:
∑
β

|η�,β |2 = 1, (8.10)

where β runs over all open channels including the elastic (entrance) channel α. With
this the absorption cross section σabs can be defined as sum over all non-elastic cross
sections:

σabs =
∑
β �=α

σβ = 4π

k2

∑
�

(2�+ 1)
∑
β �=α

|η�,β |2

= 4π

k2

∞∑
�=0

(2�+ 1)
[
1− |η�,α|2

]
. (8.11)

Simplified this reads

σabs = π

k2

∑
�

(2�+ 1)
[
1− |η�|2

]
. (8.12)

On the other hand the elastic scattering cross section is (after extending the form
derived above for one channel to the general case of a scattering function for several
channels):

σel = 4π

k2

∑
�

(2�+ 1)|δα,β − η�,β |2, (8.13)

which again can be simplified to:

σel = π

k2

∞∑
�=0

(2�+ 1)|1− η�|2. (8.14)
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Fig. 8.2 Relation between
elastic scattering and
absorption (for uncharged
particles and valid for each �

separately). Plotted is
α = σel,�

(2�+1)π/k2 = |1− η�|2
against
β = σr,�

(2�+1)π/k2 = 1− |η�|2.
The possible range is given by
α = 2[1−√1− β cos(2Reδ�)]−β ,
the limiting curve by the
values Re δ� = 0,π

For the sum, the total (integrated) cross section, one obtains:

σtot = 2π

k2

∞∑
�=0

(2�+ 1)
[
1− |η�| cos(2Reδ�)

]
. (8.15)

The relations between the elastic and the absorption cross section may be plotted
graphically, see Fig. 8.2 and show e.g. that there may be elastic scattering without
absorption (thus for |η�| = 1) (below the corresponding threshold energies), but that
absorption is always accompanied by elastic scattering. It is plausible that elastic
scattering amplitude and thus the cross section reach their maximum values, which
are given by the unitarity of the S-matrix of 4π

k2 (2�+ 1) only for vanishing absorp-
tion. The maximum value of the absorption cross section π

k2 (2�+ 1) is obtained for

η� = 0 such that also for the total cross section the upper limit is 4π

k2 (2�+ 1).
Formally absorption is described by assuming the potential causing scattering to

be complex:

V =U + iW. (8.16)

This Ansatz is the basis of the optical model of elastic scattering and of the op-
tical potential (for more detail see Chap. 10.3). The imaginary part W describes
the attenuation of the incident particle flux by absorption into channels other than
the elastic channel. This absorption can be understood in the following way: after
the Schrödinger equationis set up with a complex potential, the complex-conjugate
equation is formed, then both equations are multiplied with Ψ ∗ and Ψ , resp. Then,
subtracting both equations from one another a continuity equation is produced for a
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stationary state, i.e. with dρ/dt = 0

∇2Ψ + 2μ/�2[E − (U + iW)
]
Ψ = 0 | ·Ψ ∗,

∇2Ψ ∗ + 2μ/�2[E − (U + iW)
]
Ψ ∗ = 0 | ·Ψ,

(8.17)

Ψ ∗∇2Ψ −Ψ∇2Ψ ∗︸ ︷︷ ︸
∇ �j

= 2iμW

�2
Ψ Ψ ∗

︸ ︷︷ ︸
−kvρ

. (8.18)

The r.h.s. term characterizes the particle sink with W = 1
2v�k = 1

2
�v
λ

and W < 0.
The wave number is also complex and can be written

k = 2μ

�2

[
E − (U + iW)

]1/2 =
√

2μ

�2
(E −U)

√
1− i

W

(E −U)
= k0 + i

λ
. (8.19)

For a plane wave this means e.g.:

eikz = eik0z · e−z/λ = eik0z · e−z 2W
�v (8.20)

i.e. an amplitude attenuation with a mean free path λ= �v/2W .
Formally one may also identify the complex wave number with a complex scat-

tering phase shift

Im(δ)= Im
[
(kpot − kfree)d

]
, (8.21)

i.e. the imaginary part of the phase shift also describes the absorption. The scattering
function has the following form:

η� = e2i(Re(δ�)+iIm(δ�)) = e−2Im(δ�)e2iRe(δ�) = |η�|e2iRe(δ�) = ρ�e
2iRe(δ�). (8.22)

The absolute value of the scattering amplitude is reduced by the attenuation term
|η�|. In a phase-shift analysis therefore e.g. above the particle-production threshold
in the NN interaction the phases always have to be complex, which e.g. doubles the
number of fitting parameters.

8.3 Low-Energy Behavior of the Scattering

The low-energy behavior of the scattering (i.e. for k→ 0) is characterized by the
dominance by s-wave scattering. The following discussion thus will be limited to
scattering with �= 0 and of neutral projectiles.
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Fig. 8.3 The geometrical interpretation of the scattering length as the intersection distance on
the kr axis of the asymptotic wave function. It is obvious that at or near a resonance when the
resonance matching condition requires a horizontal tangent at r = 0 the scattering length assumes
large values. Thus the large negative np scattering length anp is indicative of the slightly unbound
singlet deuteron state

8.3.1 Scattering Length a

For k → 0 the asymptotic wave function in the extra-nuclear space converges
against a linear function of k:

sin(kr)→ kr. (8.23)

By matching this function at the nuclear surface r4 = R continuously to the wave
function in the nuclear interior and normalizing it such that it has the value 1 for
r = 0 one obtains a straight line, which intersects the kr axis at r = a. Figure 8.3
shows this geometrical interpretation of the scattering length. On the one hand

v0 = sin(kr + δ0)

sin δ0
= 1+ kr cot δ0, (8.24)

on the other—with appropriate normalization

v0 = const(r − a)=−1/a(r − a)= 1− (r/a). (8.25)

The comparison of both forms of the same quantity yields −(r/a) = limk→0(kr

cot δ0) and thus the definition of the scattering length:

a =− lim
k→0

tan δ0(k)

k
. (8.26)

With it the s-wave scattering amplitude can be expressed:

f0 = 1

k
eiδ0 sin δ0 = 1

k

sin δ0

e−iδ0

= 1

k

sin δ0

cos δ0 − i sin δ0
= 1

k(cot δ0 − i)

= 1

( k
tan δ0

)− ika,
(8.27)
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from which follows:

lim
k→0

f0 =−a and lim
k→0

σ = 4πa2. (8.28)

The absolute value of the scattering length can be evaluated by the low-energy limit
of the total cross section, however not its sign. For charged particles the sign may
be obtained from the sign of the interference with the Coulomb amplitude or from a
complete scattering-phaseshift analysis. A refinement of the scattering length con-
cept, provided by an expansion in an energy region above 0, is the effective range
that connects the s-wave phaseshift with a and reff

k cot δ0 =−1

a
+ 1

2
reffk

2 (8.29)

and allows additional comparisons with NN predictions.
The geometrical interpretation of the scattering length r = a by the intersection

of the wave function on the r axis shows that it is a quantity especially sensitive to
the behavior of the wave function at the nuclear surface i.e. where the logarithmic
derivatives of the wave functions of the interior and external spaces are matched. If
the wave function has a horizontal tangent there—this is the case for a state, which
at energy zero just becomes bound—a increases a→∞. Very small differences
in the potential may effectuate very large changes of a; this is a magnifying-glass
or lever effect. The measured charge-independence (isospin) breaking on the order-
of-magnitude of �V/V ≈ 1 % is responsible for the differences of the NN 1S0
scattering lengths

•
ann = (−18.7± 0.6) fm (for discrepancies see below)

app (Coulomb corrected)= (−17.1± 0.2) fm

anp = (−23.715± 0.015) fm

A significant difference between ann and app would mean a (small) charge-
symmetry breaking, see Sect. 3.3.3.

• There is an unresolved discrepancy in ann between 2N and 3N methods (an ar-
gument for three-nucleon forces):

– From D(n,nn)p with (−16.73± 0.47) fm and
– from D(π−, γ )2n with (−18.59± 0.40) fm.

• Another open discrepancy between results with similar methods (for a discussion
see e.g. [SLA07]:

– ann = (−16.27± 0.4) fm [VWI06, HUH00] vs.
– (−18.7± 0.6) fm [GON06].

• The scattering length for the 3S1 NN system (only for np with T = 0) is anp =
(+5.423 ± 0.005) fm, indicating a strong attraction (i.e. one bound state, the
deuteron).
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Fig. 8.4 Hard-sphere
scattering phase shifts (in
deg) for �= 0, 1, 2, 3, and 4

8.3.2 Analytically Solvable Models for the Low-Energy Behavior

Example: Scattering of Neutrons from a Hard Sphere Hard-sphere scattering
is scattering from a completely reflecting nucleus. There is no absorption and no
penetration of the wave function into the infinitely high potential region at r ≤ d .
Thus, the wave function can only have a node at r = d . In the exterior region the
wave function must fulfill the condition:

tan δ� =− j�(kd)

n�(kd)
, (8.30)

which leads to:

sin2 δ� = tan2 δ�

1+ tan2 δ�

= 1

j2
� (kd)+ n2

�(kd)
j2
� (kd)= P�(kd) · j2

� (kd). (8.31)

From the asymptotic form of j�(kr) and n�(kr) for k→∞ the behavior of the
scattering phases for large kd is derived:

δ� −−−→
kd�1

−(kd − �π/2) (8.32)

and from this the total scattering cross section

σ� = 4πd2(2�+ 1)
1

(kd)2
P�(kd)j2

� (kd)= 4π

k2
(2�+ 1)P�(kd)j2

� (kd). (8.33)

Figure 8.4 shows the hard-sphere scattering phase shifts and demonstrates that a
repulsive potential is characterized by (increasingly) negative scattering phases.

For pure s waves (�= 0)

tan δ0 =− sin(kd)

cos(kd)
=− tan(kd), (8.34)
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δ0 =−kd, (8.35)

and

a = d. (8.36)

For this special case the scattering length is equal to the potential radius and

σ0 = 4πd2 = 4 · σclass. (8.37)

Example: Scattering of Neutrons from a Rectangular Potential Well The po-
tential is given by:

U(r)=
{
−U0(U0 > 0) r < d,

0 r > d.
(8.38)

The radial equation

[
d2

dr2
+ κ2 − �(�+ 1)/r2

]
u�(r)= 0 (8.39)

with

κ =
√

k2 +U0 (8.40)

(wave number in the potential well) has the regular solution in the range of the
potential r ≤ d

u�(r)= rC�j�(κr) (8.41)

or

R�(r)= C�j�(κr), (8.42)

in the external region r ≥ d

u�(r)= C�j�(kr + δ�)= rA�

[
j�(kr)− tan δ�n�(kr)

]= rR�(kr). (8.43)

The matching of R� and R′� at the edge of the potential r = d is done such that the
logarithmic derivatives

L� =
(

dR�

dr

1

R�

)
r=d

(8.44)

of the internal and the external solutions are equated:

κ · j
′
�(κd)

j�(κd
= j ′�(kd)− tan δ�n

′
�(kd)

j�(kd)− tan δ�n�(kd)
. (8.45)

When restricting to s waves, with j0(x)= sinx/x and n0(x)=− cosx/x

tan δ0 = k tan(κd)− κ tan(kd)

κ + k tan(kd) tan(κd)
(8.46)
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Fig. 8.5 s-wave scattering
phase shift in a square-well
potential for different
potential depths U0,
characterized by κ , and
potential width d . The lower
continuous curves belong to
potential depths that are not
sufficiently deep to maintain a
bound state whereas the
upper dashed curve is such
that there is just one bound
state (like in the case of the
deuteron)

and

δ0 =−kd + arctan

[
kd

κd
tan(κd)

]
. (8.47)

For small k (kd
 1)

δ0 = kd

(
tanκd

κd
− 1

)
+ nπ. (8.48)

The behavior of the s phase depends strongly on the depth of the potential well,
namely on whether the depth is sufficient to support one or more bound states or
not. This is illustrated in Fig. 8.5.

There is an ambiguity of the scattering phases modulo π , which in a phase-shift
analysis (at one energy) cannot be resolved. It is customary to assign δ0 → 0 for
k→ 0 for a potential without a bound state, and δ0 → nπ for potentials with n
bound states (see also Levinson’s theorem [LEV49, JOA83]). During the traversal
of an isolated purely elastic resonance δ progresses by �δ = π , with �δ = π/2 at
the resonance energy. The total scattering phase, which contains also the potential-
scattering phase, increases appropriately.

From the s-wave phase shift we can derive the scattering length a (see Sect. 8.3.1)

a =
[

1− tan (
√

U0 · d)√
U0 · d

]
· d (8.49)

and the corresponding cross section

σ = 4πa2. (8.50)

8.4 Exercises

8.1 The square-well potential with depth V0 and width (range) d is a simple model
for the central neutron-proton interaction. It shows a number of features that do
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Fig. 8.6 Graphical solutions
of Eq. (8.51)

not depend strongly on the exact shape of the potential employed, especially
when no spins or higher partial waves are considered. It can be applied to scat-
tering states (total energy E > 0) as well as to bound states of a two-nucleon
system such as the np system.

(a) Verify Eq. (8.46) as general phase-shift solution of the radial equa-
tion (8.39). Apply this to low energies (�= 0) and derive scattering length
and cross section.

(b) In order to work with the true potential V we redefine the (reduced) poten-

tial U = 2μV

�2 , κ =
√

2μ(V0−E)
�

, and k =
√

2μE
�

. A square-well potential is
defined as V =−V0 in the interior region r ≤ d and E−V = V0− |E|> 0
and V = 0 in the exterior region r ≥ d with E − V = −|E| > 0. Match-
ing the logarithmic derivatives of the wave functions at r = d leads to a
transcendental equation that may be solved graphically or numerically, see
Fig. 8.6:

cot

[
d

�

√
2μ(V0 − |E|)

]
=−

√
|E|

V0 − |E| . (8.51)

What is the number i of bound states for the given potential depth −V0?
(Note: i is equal to he number of crossings of the function (2) with the
negative branches of function (1)).

(c) What is the condition for threshold values of V0 and d for the transition
from no to one bound state (zero-energy resonance)?

(d) Write a program (e.g. in FORTRAN, C, MAPLE, or MATHEMATICA) to
solve Eq. (8.51) numerically for V0 =−50 MeV, d = 1.4 fm. Try the same
with a Woods-Saxon potential of equal depth and width, and diffuseness of
0.2 fm and a Yukawa potential V (r) = g2 exp(−r/r0)

r
, where g is the pion-

nucleon coupling constant ≈0.3 �c and the radius parameter r0 = 1.4 fm,
the approximate range of the nuclear force.
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8.2 Apply this to the real case of the n–p system (more specifically: the 3S1
system), which has a bound state, the deuteron. With the known binding en-
ergy of EBE = −2.2245 MeV and a somewhat arbitrarily assumed value of
d = 2.1× 10−15 m calculate the potential depth −V0 and the number of bound
states.

8.3 Calculate the wave function of the deuteron u0(r) under these simplifying as-
sumptions (the real deuteron or more generally the np interaction has a tensor-
force component providing for a D-state admixture of a few percent to the S

state). The probability of finding the neutron at a distance between r and r+dr

from the proton, is |u0(r)|2dr . The absolute normalization of the wave func-
tion is obtained by the condition

∫ |uo(r)|2dr = 1 together with the matching
condition at the boundary r = d . Plot |u0(r)|2. Discuss how the long tail of
this function with rrms ≈ 5.4 fm which is much larger than the radius from the
systematics of R = 1.2 · A1/3 (see Sect. 2.4) suggests, can be related to the
strength of the binding potential. Make a connection to the radii of halo nuclei,
cf. Sect. 2.4.2.

References

[GOL64] M.L. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1964)
[GON06] D.E. Gonzales Trotter et al., Phys. Rev. C 73, 034001 (2006)
[HUH00] V. Huhn et al., Phys. Rev. C 63, 014003 (2000)
[JOA83] C. Joachain, Quantum Collision Theory, 3rd edn. (North-Holland, Amsterdam, 1983)
[LEV49] N. Levinson, Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 254(9) (1949)
[MOT65] N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Clarendon Press, Oxford,

1965)
[NEW66] R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York,

1966)
[NOE76] W. Nörenberg, H.A. Weidenmüller, Introd. to the Theory of Heavy Ion Collisions. Lec-

ture Notes in Physics, vol. 51 (Springer, Heidelberg, 1976)
[ROD67] L.S. Rodberg, R.M. Thaler, Introd. to the Quantum Theory of Scattering (Academic

Press, New York, 1967)
[SEG83] E. Segrè, Nuclei and Particles (Benjamin, Reading, 1983)
[SLA07] I. Šlaus, Nucl. Phys. A 790, 199c (2007)
[VWI06] W. von Witsch, X. Ruan, H. Witała, Phys. Rev. C 74, 014001 (2006)



Chapter 9
The Nucleon-Nucleon Interaction

The nucleon-nucleon-interaction is the prototype for the action of the nuclear forces.
With their complete “understanding” one can hope to also understand the structure
and interactions of complex nuclei, at least in the sense of effective interactions. The
description of the NN interaction in the framework of meson-exchange models has
become so good that the latest precision potentials can be fitted to the wealth of
data with reduced χ2-values near 1. The status of the NN interaction up to 1976 is
summarized in Ref. [BRO76].

In addition, this allows to test these potentials in the next-heavier three-nucleon
systems. This is possible because these systems can be described exactly in terms
of two-(and more-) body interactions such as the NN forces. The formalism was
already given by Faddeev [FAD61] and extended by Alt, Grassberger, and Sandhas
into the AGS equations, see Ref. [ALT67], see also [GLO96]. Present-day Faddeev
calculations are considered numerically exact such that even additional new phe-
nomena such as three-body forces, which are not forbidden can be searched for and
investigated. A new development is the application of chiral perturbation theory or
effective-field theories EFT in order to base the description on the more fundamen-
tal basis of quantum chromodynamics QCD. It is interesting that the results are very
similar to those of the meson-exchange approach. Here only the NN-system results
will be discussed. The role of isospin or isospin breaking in connection with the NN
scattering lengths has been discussed above, see Sect. 3.3.3.

9.1 The Observables of the NN Systems

For the determination of the NN scattering phases, which, above the pion-production
threshold, are complex, a multitude of (especially polarization-) observables have to
be measured (for more detail see Chap. 5). In principle, there are 256, which, by
conservation laws (P and T invariance) and exchange symmetry (for the nn and
pp systems), are reduced to 36 or 25, respectively, linearly independent measur-
able observables. Because the scattering is completely described by 5 (or 6, resp.)

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
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complex scattering amplitudes the measurement of only 9 (pp, nn) or 11 (np) quan-
tities, selected appropriately from these, would suffice. The ones, which are easiest
to measure are, besides the differential cross section, analyzing powers, the polar-
ization transfer, and spin-correlation coefficients.

For NN these experiments in limited energy regions may be considered complete.
In practice, more observables than those considered minimally necessary for a solu-
tion of the equations for a determination of the M (T ) matrix, must be determined.
The usual parametrization of the total set of data is that in the form of scattering-
phase shifts for partial waves for each j (coupled from the particle spins and orbital
angular momenta). Also the direct parametrization by scattering amplitudes, i.e. the
elements of the M matrix, has been used.

9.1.1 NN Observables

Here only a selection of typical observables will be shown. One basic observable is
the total cross section σ(E). Figure 9.1 shows the smooth behavior of pure poten-
tial scattering without resonances in this energy range (resonances such as the �,
see Fig. 11.8, an excited nucleon state, have been found at higher energies, others,
more exotic resonances such as dibaryon resonances, possible 6-quark states, have
been searched for in excitation functions but could not be identified so far, see also
Fig. 4.6). The neutron-proton scattering at the very low energies is very different
from that in the pp case where the Coulomb scattering is dominant; it shows the
interference region at the lowest energies, the constant s-wave cross section at low-
to-intermediate energies and the onset of higher partial waves, then the opening of
inelastic channels. The np cross section towards very low energies (i.e. for cold or
ultra-cold neutrons) increases beyond the constant value in the thermal and epither-
mal regions because of the neutron’s wave properties. This is shown in Fig. 9.2.
Both are almost constant but at the very highest energies so far achieved (at the
LHC) the elastic as well inelastic pp integrated cross sections rise again. The be-
havior of angular distributions also gives a first impression of the reaction mech-
anism of the NN interactions as shown in Figs. 9.3 and 9.4. The pp cross section
angular distributions are dominated by two features, one being the symmetry about
90◦ due to the identity of the entrance-channel particles, the other the interference
between the two reaction mechanisms of nuclear and Coulomb scattering. The lat-
ter becomes stronger with lower energies and the interference minimum is very
dominant around ≈400 keV and 90◦. The interference is destructive, which signi-
fies that—with the repulsive Coulomb force—the nuclear force must be attractive
in this energy region. The nuclear part (central region) is nearly isotropic as is ex-
pected for s-wave scattering. The np angular distributions are shown for comparison
in Fig. 9.4. Despite many years of experimental work the precision of the np data is
substantially lower than that of pp data. Figure 9.5 shows the analyzing powers of
pp and np scattering at 25 MeV. The large differences between the two systems—
for the purely nuclear (hadronic) interaction very similar observables are expected



9.1 The Observables of the NN Systems 147

Fig. 9.1 Excitation functions
of the total cross sections of
pp and np scattering. The
figures show the similarity of
the pp and np cross sections
(outside the
Coulomb-dominated lower
energies) due to isospin
conservation. The low-energy
cross section of pp scattering
is dominated by Coulomb
whereas in np scattering we
have the pure NN interaction.
The low- to very-low-energy
regions of the np scattering
display several quite different
features and are shown in the
following figure

Fig. 9.2 The low-energy
behavior of np scattering
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Fig. 9.3 The pp cross section angular distributions at a few selected energies. The data have
also been selected to give a clearer picture, and the curves show recent fits to the data base via
a phase-shift analysis and using the Nijmegen93 NN potential. Note the very deep interference
minimum of the 0.5 MeV data

due to isospin symmetry—come about by the interference with the Coulomb inter-
action in the pp case. The analyzing powers are very small because at these energies
the interaction is s-wave dominated and polarizations are due to interference of S-
with higher waves. High precision of the measurements is required. Especially the
polarized neutrons must be produced in primary reactions such as the D(d,n) reac-
tion (see below) by spin transfer. Thus, count rates are low, and multiple scattering
and detector efficiencies must be taken into account. Whereas complete sets of NN
observables exist at medium energies (several 100 MeV) very few or no data ex-
ist at tandem VdG energies, especially for np and for two-spin observables. As an

example Fig. 9.6 shows the transfer observables K
y′
y and Kx′

x at 25 MeV.

9.1.2 NN Scattering Phases

These and all other observables at all energies where data exist are continuously
subjected to common phase-shift analyses. The scattering phases obtained by χ2

minimization parametrize the data in an angle-independent form as functions of
energy. Starting at the lowest particle-production threshold (the pion threshold) the
phases must be complex because of the imaginary absorption term, see Figs. 9.7
and 9.8.
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Fig. 9.4 The np cross section angular distributione at a few selected energies. The data are also
selected to give a clearer picture, and the curves show recent fits to the data base via a phase-shift
analysis and using the Nijmegen93 NN potential. Note the near-isotropy typical for s-wave scat-
tering and slow beginning of anisotropy at higher energies with the onset of p-wave scattering.
The approximate symmetry around 90◦ can be interpreted as due to the NN interaction being an
exchange force with approximate isospin conservation

9.1.3 NN Interaction as Exchange Force

All fundamental interactions are explained by the exchange of virtual particles.
In the case of the NN interaction the exchange particles are mesons (or pairs of
mesons). The masses of the different exchange particles determines the range of the
different contributions of the nuclear force via the uncertainty relation. The light-
est massive virtual particles, the pions, are responsible for the nuclear forces “far
out”, the heavier ones for the forces “further in”. Various modern (precision) ex-
change potentials (typically “CD BONN”, “NIJMEGEN”, “ARGONNE 18” etc.)
describe die data with χ2

red ≈ 1. Figure 9.9 shows as a Feynman diagram the ex-
change process and the radial behavior of the central part of the nuclear force with
an attractive outer, and further in, of a repulsive part (“hard core”) that is usually
attributed to the quark-quark or quark-gluon interactions. The conservation laws or
symmetries (parity, time reversal, exchange symmetry, isospin etc.) allow only cer-
tain forms of the nuclear interaction (central, spin-spin, spin-orbit, tensor force etc.).
Experimentally these different force components contribute differently in different
observables. An example is the quadrupole moment of the only bound NN system
(that of the deuteron) that requires a D-wave admixture to the s-wave ground state,
which can only be explained by the action of a tensor force. The spin-spin force
explains the energy difference between the bound np triplet (the deuteron) and the
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Fig. 9.5 Angular distributions of the analyzing power of the pp and np scattering at 25 MeV.
Note the smallness of the effects and the precision of the measurements necessary. The lines are
results of an NN phase-shift analysis. All data from the NN database CNS/SAID [CNS13]
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Fig. 9.6 Angular distributions of the polarization transfer coefficients K
y′
y and Kx′

x of the pp scat-
tering at 25 MeV. The lines are results of calculations with the Bonn (solid), Paris (short-dashed),
and Nijmegen (long-dashed) NN potentials. All data from [KRE94]

Fig. 9.7 (Real) scattering
phases of np scattering as
functions of the energy. The
potential parts responsible for
the respective partial waves
change from attractive to
repulsive at energies where
the phase shifts become
negative. This can be
interpreted as touching on the
inner potential ranges that
cannot be explained by pion
exchange but need heavier
exchange particles

unbound singlet np scattering system (the singlet-deuteron d∗). The spin-orbit po-
tential acts predominantly in polarization observables such as the analyzing power.
Table 9.2 shows these contributions.
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Fig. 9.8 Inelasticity:
Imaginary part (with
|η0| = exp (−2Im(δ0))) of the
1S0 scattering phase of
s-wave np scattering. At the
pion threshold the phases
become complex

Fig. 9.9 Feynman diagram
of the principle of the
nucleon-nucleon force, as
following from boson
exchange, and shape of the
NN potential showing the
different exchange bosons
and the ranges, in which they
dominate (qualitatively)

Table 9.1 Role of the
exchange bosons in the Bonn
NN potential. The meaning of
the abbreviations is: no sign:
attraction, −: repulsion, C:
Central, T: Tensor, LS:
Spin-orbit, SS: Spin-Spin

Boson Main potential contribution Range

π C, T, LS Long

η C, T, LS Medium

ω C (-), SS, T, LS Medium

ρ C, T(-), LS Short to medium

2π ≡ σ C, LS Medium

Correlated 2π

9.2 Few-Nucleon Systems

With the progress in high-speed computing one of the basic goals of nuclear theory
gets into reach, the “exact” calculation of nuclear properties and reactions with the
fundamental NN (or even q-g interactions) as input. The success of NCSM (no-core
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Table 9.2 NN-force contributions. Nucleon-spin dependent quantities are marked

Form compatible with conservation laws/invariance principles: V =∑i Vi ·Oi

Contributions Oi

Central 1

Spin-orbit L · S S = 1
2 (σ1 + σ2)

Tensor 3(σ1·r1)(σ2·r2)

r2 − σ1 · σ2

Spin-spin σ1 · σ2

Quadratic Spin-orbit (L · S)2

shell model) and other methods in calculating ground and excited state properties
of heavier light nuclei is evident. Important steps in this direction are numerically-
exact calculations of the three- and four-nucleon systems. Recent developments are
the application of Effective Field Theories, Chiral-Perturbation Theories based on
low-energy approximations to QCD.

9.2.1 The Two-Nucleon System

The most fundamental few-nucleon system is the NN system, which already has a
rich structure such as

• It contains three scattering systems (nn, np, and np in the spin singlet state) and
one bound-state system, the deuteron (np in the spin-triplet state).

• It is a testing ground for isospin symmetry.
• It provides the interplay between the different components of the hadronic nuclear

and the Coulomb forces.
• The observables of the NN systems and the scattering phase shifts derived from

them form the basic input into calculations of systems with A > 2. The quality
of the least-squares fits of different theoretical (but still phenomenological from
the QCD viewpoint) models for NN potentials based on meson exchange is such
that χred ≈ 1. Consequently, these NN parameters have been used in the most
advanced Faddeev [FAD61] and Faddeev-Yakubovsky [YAK67] calculations for
three- and four-nucleon observables. The methods applied are considered to be
numerically exact [GLO83, GLO96]. Experimentally, features of the NN inter-
action can be studied also in special situations of reactions with more than two
outgoing particles, especially three-body breakup reactions, see Sect. 9.2.2. An
example is the Final-State Interaction FSI of the np as well as the nn systems
at Erel ≈ 0 allowing the determination or confirmation of the pertinent scattering
lengths anp and ann (see Fig. 9.12). The nn scattering length is practically impos-
sible to obtain by direct nn scattering (attempts to use nuclear explosions failed
so far). In systems where the FSI leads through a resonant state its properties may
be studied: An example is the reaction

d + α→ 5Li∗ + n→ α + p+ n (9.1)
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with the two charged particles measured in coincidence, i.e. in a kinematically
complete experiment. This method was generalized by the THM (the Trojan-
Horse Method [BAU04]).

9.2.2 The Three-Nucleon System

The three-nucleon system is—after the 2N system—the next more-complicated sys-
tem governed by nucleon-nucleon forces. With numerically exact calculations in the
framework of the Faddeev formalism it was possible to describe successfully the 3N

system by a sum of NN interactions. The observables that must be described are not
only those of the scattering system (d +N elastic scattering, deuteron breakup, and
capture reactions), but also the binding energies of the two three-nucleon isotopes
3H and 3He.

For many observables the theoretical description is rather good. However, for a
few observables (at energies below 30 MeV) there are still discrepancies with the
predictions of the theory, becoming smaller at higher energies. They are:

• The predicted binding energy of the triton (3H) is about 1 MeV too low.
• Different single observables of the scattering system are not well described (de-

spite a relatively good description of many others):

– The analyzing power Ay of the elastic scatterings 2H(p,p)2H and 2H(n,n)2H
(“the analyzing-power puzzle”);

– The vector analyzing power iT11 of the elastic scattering 1H(d, d)1H;
– The cross sections of the breakup reaction 2H(p,pp)n and 2H(n,nn)1H in

certain configurations such as the “space-star”, the “SCRE (symmetric constant
relative energy)”, and possibly the quasi-free (QFS) configurations.

A recent reference addressing especially these discrepancies is Ref. [SAG10].

9.2.3 Elastic Scattering in the Three-Nucleon System

Only one result for elastic scattering of the N + d system with this discrepancy will
be mentioned here. Figure 9.10 shows an example at one energy of the discrepancy
of Ay and a plot of its systematic behavior with energy.

9.2.4 Kinematics of Three-Nucleon Breakup Reactions

Whereas the elastic scattering in these systems is like in all other two-body scatter-
ing reactions there is the additional possibility of particle breakup. Here the case of
the three-nucleon system will be discussed. The schemes are

n+ d→ n+ p+ n (9.2)
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Fig. 9.10 Illustration of the Ay puzzles of the elastic scattering of nucleons from 2H by comparing
the experimental analyzing powers at 3 MeV in the maximum with theoretical predictions (the
nd data are slightly higher than the pd data). The examples (right) show the discrepancies for
neutron as well as proton scattering off deuterons (in the maximum). The left figure shows the
systematic behavior of the Ay puzzle for nd as well as pd data with energy up to 30 MeV. The
data points and theoretical values were taken from the maxima of the angular distributions near
120◦. All calculations with quite different approaches: Faddeev calculations with different NN
potentials, with and without three-body forces, with and without the Coulomb force, and, finally,
using EFT, scatter around values that are far too low, i.e. so far no theoretical approach was capable
of reproducing the angular distributions

or

p+ d→ p+ p+ n (9.3)

or more generally

1+ 2→ 3+ 4+ 5. (9.4)

We assume the detectors to be point detectors, which often approximates the behav-
ior of small solid-state detectors, or the single-pixel elements of large (e.g. ≈ 4π )
detectors. For the (two-body) elastic scattering the measurement of the energy un-
der polar and azimuthal angles θ,φ of one ejectile determines the entire kinematics
uniquely, also for the corresponding recoil particle, with the two outgoing particles
lying in a plane: the three parameters just satisfy the momentum and energy conser-
vation laws.

For a breakup reaction with three outgoing particles the measurement with one
such detector is “kinematically incomplete” (or “inclusive”). Four parameters, en-
ergy and the three momentum components of one ejectile are insufficient to fix the
outgoing kinematics completely, i.e. the measured events of one ejectile are aver-
aged over the variables of the other two. However, with two detectors in coinci-
dence (a “kinematically complete” or “exclusive” measurement), e.g. with two pro-
ton detectors in Eq. (9.4) six momentum components are known whereas five would
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suffice to satisfy energy and momentum conservation. Thus, the problem is one-
fold overdetermined. Therefore, all events of a given reaction channel must lie on a
line, the kinematical locus embedded in a continuum of background events. These
could come, e.g., from electronic noise (or in reactions with more particles) from
a four-body breakup. This overdetermination can be used to separate true events
from any background. It also has the consequence that, in general, there exist rela-
tions between kinematical parameters such as detector angles and ejectile energies.
The form of the kinematical curve can be derived from such a relation between the
kinetic energies Ti of two outgoing particles:

k(Ti, Tj )= 0; i �= j = 3,4,5. (9.5)

The relation is obtained from the invariance of the square of the four-momentum of
the unobserved particle 5:

P μ =
(

E

c
, �p
)
= (γ1m1c+m2c, γ1m1�v1)

P 2
5 = P

μ
5 P5μ =m2

5c
2 = [P − (P3 + P4)

]2
.

(9.6)

Explicitly this leads to

0 = 1/2
(
m3c

2 +m2
4c

2 −m2
5c

2 +M2c2)

−ET3/c
2 +

√
(E/c)2 −M2c2

√(
T3/c2

)−m2
3c

2 cos θ3

−ET4/c
2 +

√
(E/c)2 −M2c2

√(
T4/c2

)−m2
4c

2 cos θ4

+ T3T4/c
2 −

√
(T3/c)2 −m2

3c
2
√(

T4/c2
)−m2

4c
2 cos θ34 (9.7)

with

M2c2 = m2
1c

2 +m2
2c

2 + 2m2T1,

Ti = γimic
2 = Ti +Mic

2, and

cos θ34 = cos θ3 cos θ4 + sin θ3 sin θ4 cos (φ3 − φ4). (9.8)

At a typical tandem VdG energy of 20 MeV T1/m1c
2 ≈ 0.02 thus the differences

between relativistic and non-relativistic descriptions are in the one-percent range.
Non-relativistically the analogous relation between kinetic energies in the lab. sys-
tem is again obtained from energy and momentum conservation and contains the
Q-value of the reaction considered:

0 = T1(m1 −m5)−m5Q+ (m5 +m3)T3 + (m5 +m4)T4

− 2
√

m1m3T1T3 cos θ3 − 2
√

m1m4T1T4 cos θ4

+ 2
√

m3m4T3T4 cos θ34. (9.9)
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Fig. 9.11 Kinematical curves of the two coincident protons of the reaction 2H(p,pp)n in the T4
vs. T3 plane: raw data (left) and data after background subtraction using cuts on the time-of-flight
difference spectrum. The spots with enhanced intensities are caused by the quasi-two-particle p3-n
and p4-n final-state interactions

In the momentum, i.e. the (
√

T3,
√

T4) space this equation describes an ellipse.
A typical set of kinematical curves is shown in Fig. 9.11. In general, in the c.m. sys-
tem, three outgoing particles will be ejected in all possible directions {θi, φi}i=1,3,
i.e. in all of phase space (in the lab. system and depending on the Q values the
emission may be restricted to a forward cone). In order to register the interac-
tions between all particles completely a 4π arrangement of many single detectors
or position-sensitive devices like in intermediate and high-energy physics are re-
quired. Among other reasons mostly the limited resources of smaller laboratories
led to investigations of special kinematical configurations. “Classically” these were:

• The final-state interaction (FSI), e.g. between two of three outgoing particles.
Examples are the nn, pp, or np FSI in the d + p breakup reaction, especially
at relative energies between the two particles near zero, which is selected by
choosing appropriate angles. This is important for the determination of the re-
spective scattering lengths ann, anp , and app . Especially when an intermediate,
longer-lived state is formed in a two-particle subsystem of the three-particle out-
put channel, sequential decay may occur which allows the study of that subsys-
tem. This method is closely related to the Trojan-Horse Method which was espe-
cially devised to study astrophysical two-particle reactions in the very-low-energy
regime where the problems with the strong Coulomb interaction can be circum-
vented. Applications to reactions in inverse kinematics with radioactive (or rare)
ion beams have been discussed. For a survey see Ref. [BAU04].

• The quasi-free scattering (QFS), e.g. the pp or nn QFS in the d + p breakup
that is characterized by the third particle being a spectator, i.e. at rest in the c.m.
system.
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Fig. 9.12 Four “classical” situations of the N + d deuteron breakup reactions

• The collinearity (COL) situation where the third particle is at rest in the lab. sys-
tem with the idea that for the two other particles colliding “head-on” the effects
of two-body forces would be weak and those of three-body forces would appear
more clearly (which was never really proved).

• All forms of true three-particle reactions, but again restricted to a finite number of
situations such as the space-star (SST) where the momenta of all three particles
lie in a plane whose orientation could be arbitrary.

Figure 9.12 shows schematically four typical breakup situations for the case of the
3N breakup p(1)+ d(2)→ p(3)+ p(4)+ n(5) or n(1)+ d(2)→ n(3)+ n(4)+
p(5). The ideal intensity distributions of particles from special (quasi-two-body)
interactions (such as the FSI of two subsystems) reaction mechanisms appear as
points on the kinematical curve. Usually the intensity distribution along the kine-
matical curve (which is spread around the theoretical locus by finite experimental
resolution) is projected onto this curve and plotted as function of the path length
S(T3, T4) after removing background.
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9.2.5 Results for the Three-Nucleon Breakup Reaction

The results (cross sections d3σ
dSdΩ3dΩ4

or polarization observables as functions of
S(T3, T4)) are compared to theoretical predictions using advanced Faddeev meth-
ods with NN meson-exchange potentials or effective-field approximations as input.
For both the results are very similar and two cases of excellent agreement as well
as continuing disagreement are shown here in Fig. 9.13, see also Ref. [HGS01].
Figure 9.14 shows two examples of breakup analyzing powers which are quite
small (s-wave dominance). Figure 9.15 shows the systematic behavior of the un-
solved discrepancies of the data of the symmetric space-star (SST) situations of
the 2H(p,pp)n as well as the 2H(n,nn)1H reactions, as compared to “numerically
exact” Faddeev calculations with the CD Bonn NN potential with ([DEL08], tri-
angles) and without (line) the Coulomb interaction. The results in the framework
of EFT input are not very different, and the addition of three-body forces do not
remedy the situation. In summary, the calculations with and without the Coulomb
interaction and/or three-body forces disagree with the data of both types of reac-
tions. For a recent evaluation of the situation see e.g. Ref. [KAL12]. All attempts so
far to remedy the discrepancies discussed above by adding additional phenomeno-
logical three-body forces or using the more fundamental EFT approach have failed
at the low energies. At higher (intermediate) energies above 100 MeV the introduc-
tion of three-body forces has improved the small existing discrepancies. One has
to conclude that the three-body force, at least of the types tested so far, becomes
more important only at higher energies whereas the remaining low-energy prob-
lems are still unsolved. It is not only an experimental fact, but also suggested by
EFT that these three-nucleon forces—at least at low reaction energies—are quite
small (<1 %). The indications that at intermediate energies effects of three-body
forces cannot be neglected suggest that these forces may be of short range. For a
careful evaluation of the role of three-nucleon interactions in few-nucleon systems
see Ref. [KAL12].

9.2.6 Recent Progress in Few-Nucleon Reactions

Treatment of the Coulomb Force For many years the full treatment of few-body
reactions was hampered by the fact that the Coulomb force could not be exactly
included when charged particles were involved such as in the d + p system. The
description was therefore always approximate in the sense that protons were treated
as uncharged. The problem, however, was that the experiments with protons had
higher quality (as to statistical as well as systematic errors) than the corresponding
neutron experiments. Isospin breaking would in principle disallow this procedure
and the comparison between isospin mirror channels is interesting by itself. Al-
though for many observables the Coulomb-free treatment yielded good agreement
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Fig. 9.13 Examples for different “special” configurations of the breakup reaction 2H(p,pp)n.
The data [HGS01] are compared to predictions in the framework of the Faddeev theory using dif-
ferent NN interactions fitted to NN data, as input. The inclusion of the Tucson-Melbourne three–
body force does not change the results significantly

with the proton-induced data, conclusions about the Faddeev calculations, the influ-
ence of three-body forces, or their interference with the Coulomb force were always
somewhat uncertain. Therefore it is a great achievement to be able to include the
Coulomb force in the Faddeev calculations.
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Fig. 9.14 Examples of analyzing powers for two different “special” configurations of the breakup
reaction 2H(p,pp)n [HGS01]. The data are compared to predictions in the framework of the Fad-
deev theory using different NN interactions fitted to NN data, as input

Fig. 9.15 Low-energy behavior of the kinematically complete 2H(p,pp)n and 2H(n,nn)1H re-
actions in identical SST situations. The data (points with error bars from different laborato-
ries TUNL(Duke U.) [SET96, CRO01, MAC04], Bochum [STE89], Erlangen [STR89, GEB93],
TUNL/Beijing [ZHO01], Cologne [HGS01] and references therein, and Kyushu U. [SAG10]) are
compared to predictions in the framework of the Faddeev theory using the CD Bonn NN inter-
actions fitted to NN data, e.g. from the Bochum-Cracow group (H. Witała et al. [GLO96]) and
A. Deltuva [DEL09], as input

Effective-Field/Chiral Perturbation Theory The fact that three-body forces can-
not be excluded by physical laws leads to the postulate of such forces, which e.g. are
known in molecules (Axilrod-Teller force), also for nuclei, see e.g. Ref. [HAM13].
Such forces can be integrated in Faddeev calculations (an example: the Tucson-
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Melbourne force) and thus their effects may be studied explicitly. On the other hand,
the full and exact integration of the Coulomb force—because of its long range and
subsequent convergence problems—into the microscopic calculations has been dif-
ficult and succeeded satisfactorily only recently, see e.g. Ref. [DEL08].

The theories aim at deriving the nuclear forces from the quark-gluon interac-
tion described by QCD. The typical energies of nuclear physics are in the “non-
perturbative” region, in which exact solutions in the framework of QCD appear
difficult or impossible. The “chiral perturbation theory”, however, has already pro-
vided approximate solutions at different levels characterized by their relation to the
leading order of approximation, e.g. present predictions for the 3N systems are on
N3LO , i.e. “next-to-next-to-next-to-leading-order”. (For a survey of the present sta-
tus of the field see Ref. [KAL12] and references therein). They have been successful
in describing equally well the observables of the 3N systems but—remarkably—
also with the exceptions discussed above. In view of the claim of the calculations
being exact, these low-energy discrepancies. which seem to resist all approaches to
solutions so far, have to be taken seriously and point to some unknown parameter in
the theories. Generally, a direct influence of the quarks or gluons and their proper-
ties on phenomena of nuclear physics seems almost absent—with exceptions such
as in isospin breaking by the u-d quark mass difference.

9.2.7 Other Few-Nucleon Systems

For the four-nucleon systems the appropriate formalism (the Faddeev-Yakubovsky
equations) [YAK67] was published long ago, but even without the Coulomb force
the exact calculations meet large calculational difficulties. EFT predicts that the
possible four-nucleon forces will be smaller than the three-nucleon forces, probably
by an order of magnitude, and may, for the time being, neglected. For the description
of the nuclear interactions between heavier nuclei one has to rely on “effective”
interactions derived from the more fundamental NN interaction. The predictions of
ground-state and low-excited state properties of light nuclei of the p and sd shells
using different models with these interactions have been surprisingly successful.
The properties of bound and low-excited states of light nuclei seem to require the
three-nucleon force for their description. The same seems to be true for heavier
nuclei, e.g. the neutron-rich Ca isotopes, such that the evolution of the shell structure
towards the dripline requires a three-body force component [HAG12].

9.3 Exercises

9.1. The square-well potential model of Chap. 8, describing the deuteron, can be
equally applied to the s-wave (�= 0) np scattering (E > 0).

(a) Explain why partial waves with � > 0 are not important below ≈20 MeV.
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(b) Starting with Eqs. (8.46) and (8.47) with n= 0 (no bound states) calculate
for very small E or k→ 0 δ0 and σ0 of the np system, using similar poten-
tial parameters as for the deuteron, e.g. V0 = 36 MeV, d = 2.1 · 10−15 m.
The resulting value of σ0(np) will disagree strongly with the experimental
value of σ0,exp = 20.4 b, see the typical ≈constant cross section in the s-
wave region in Fig. 9.2. Discuss how the potential describes features of the
deuteron quite well, but fails for np scattering.

(c) The discrepancy between σ0,exp and that as calculated above suggests that
the potential derived for the spin-triplet system 3S1 is insufficient. Evidence
shows that n and p scatter strongly also in the spin-singlet state 1S0 which
does not contribute to the np bound state. If we consider the cross sections
and their relation to scattering lengths and assume that the cross sections
for both states add up incoherently, then

σtot(np)= 4π

(
3

4
a2
t +

1

4
a2
s

)
. (9.10)

Calculate e.g. the singlet scattering length as after using σ0,exp and the
triplet scattering length at as input and compare with the established val-
ues, see e.g. Sect. 2.3.

9.2. The sign of the scattering lengths cannot be established from a total-cross sec-
tion measurement alone, but needs additional information such as from inter-
ference terms (see the following exercise) or isospin arguments. Interpret the
large negative value of as(pn) as to a possible singlet state of the deuteron
(the d∗).

9.3. Neutrons can be captured by hydrogen (i.e. protons) to form 2H according to

n+ p→ 2H+ γ. (9.11)

What is the threshold neutron energy for this reaction? Explain the terms:
“binding energy” of the deuteron and “Q-value”. How could you determine
the neutron rest mass by this or the inverse reaction?

9.4. What is the minimum lab. energy of a proton for the breakup of a deuteron (at
rest) by the

p+ d→ p+ p+ n (9.12)

reaction? What, if a deuteron is the projectile bombarding the proton at rest?
9.5. Prove the following properties of the NN tensor force

(a) Its operator

S12 = 3( �σ1�r)( �σ2�r)
r2

− �σ1 �σ2 (9.13)

vanishes when integrated over the full 3D space. It was defined such that
any central-force component vanishes.
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(b) It vanishes in the spin-singlet state (S = 0) of the np system, thus only
contributing to the np spin-triplet states (S = 1, the deuteron and the triplet
np scattering observables).

9.6. Calculate the eigenvalues of

• the spin-spin operator ( �s1 �s2) and
• the spin-orbit operator (�� · �s).

9.7. For neutron energies, low enough that their de-Broglie wavelength is >d , the
distance of the two protons in the H2 molecule, they scatter from both nu-
clei coherently. The hydrogen comes in two possible spin states: ortho- and
parahydrogen are two states of the molecule H2 with different states of the
two proton spins: S = 0 (↑↓)(para) and S = 1 ↑↑ (ortho). Their mixture in
H2 depends on temperature, being mostly para at low temperature (99.9 % at
20 K) and a statistical mixture of 75 % ortho to 25 % para at room tempera-
ture. Coherent scattering from parahydrogen means σpara = 4π(a1 + a2)

2 (in-
stead of σpara = 4π(a2

1 + a2
2)), leading to an interference term in σ . This term

allows the determination of the sign of the scattering lengths, which in turn
are related to the binding strength of the np interaction, different for singlet
or triplet p-n scattering via the spin-spin force. The neutron scattering from
each proton can occur in the p-n singlet or triplet states with expectation val-
ues 〈�σn · �σp(i)〉 = −3 (singlet) or = 1 (triplet) with corresponding scattering
lengths as and at .

For σortho the contributions of the singlet and triplet p-n states to the mixed
states of H2, leading to total spins of 3/2 and 1/2, have to be considered. Ex-
perimentally only σpara and σ of the scattering from the 75 % ortho/25 % para
mixture of H2 at room temperature or from the free proton can be measured.

(a) Derive the values of the p-n ortho cross section and of the singlet and
triplet p-n scattering lengths. Use the following definitions: The com-
bined scattering length of scattering of the neutron from one proton can
be expressed by a1,2 = as(1 − �σn · �σp) + at (3 + �σn · �σp) (the same for
both protons). The total cross section is thus σ = 4π(a1 + a2)

2. With
�σ1 + �σ2 = �σH2 = 0 we obtain

σpara = π(as + 3at )
3. (9.14)

Show that a similar Ansatz for ortho-H2 leads to

σortho = σpara + 2π(at − as)
2. (9.15)

(Note: 〈�σn · �σH2〉 = 0 due to their spins being uncorrelated; use the expec-
tation values 〈�σn · �σH2〉 for total spin states S = 1/2 and 3/2 (spin triplet
H2+ neutron spin) to calculate 〈�σn · �σH2〉2. �σi designates the spin 1/2 Pauli
operators).

Experimental results are: σortho = 155 b and σpara = 5 b at ≈0.8 meV.
Calculate the singlet and triplet scattering lengths as and at , compare them
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with values from p-n scattering experiments and the deuteron bindig en-
ergy, and discuss their signs in view of spin-dependent parts of the nuclear
force.

(b) Show that the p-n triplet and singlet are bound/unbound and discuss this
spin-dependent part for the NN force.

(c) Show that the measured cross section values are in agreement with a neu-
tron spin of 1/2, but not of 3/2.

9.8. The three spin-triplet states 3D1, 3D2, and 3D3 would be degenerate with the
spin-spin and central forces alone. The phase-shift analysis of n-p scattering
shows, however, that they are different at all energies: Which additional force
is required to explain this (see exercises above)?
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Chapter 10
Models of Reactions—Direct Reactions

Models of real reactions have, by definition, limited ranges of applicability. There is
a hierarchy of excitations that have to be described by different reaction models. Di-
rect reactions are in principle those, which excite only a small number of degrees of
freedom thus also involving only few nucleons in the reaction. The limiting case are
single-particle excitations in reactions, which therefore proceed fast and peripheral.
Typical structures in excitation functions are therefore wide (≈ MeV). Compound-
nuclear reactions are at the other end of the spectrum of the possible excitations and
involve many, in the limit all nucleons in the interaction. They require the attain-
ment of a state of thermal equilibrium of all degrees of freedom. Necessarily this is
connected with long equilibration times and—via the uncertainty relation—narrow
structures in the excitation functions. Between these extremes of the hierarchy of ex-
citations (for illustration see Fig. 1.4) we have a number of different processes that,
depending on their contexts are called semi-direct, pre-equilibrium, pre-compound,
doorway, hallway etc. processes.

10.1 Generalities

Direct reactions have a main feature, which is their time scale. They occur in times
on the order-of-magnitude of the passage time of the projectiles through the target
nucleus.

10.2 Elastic Scattering

The most important reaction model for the description of the direct (“shape”) elas-
tic scattering is the optical model. It is based on the idea that at somewhat higher
energies absorption may be assumed and thus the potential (and subsequently also
the scattering phase shifts) must be complex (see also Sect. 8.2).
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10.3 Optical Model

As standard literature on the optical model only a few references will be given here.
The references [HOD63, HOD67, MAR70] cover much of the field. The relevant
radial Schrödinger equation for protons (spin s = 1/2) reads

[
d2

dr2
+ k2 − �(�+ 1)

r2
+ Vf (r)+ iWg(r)− VC(r)

+ (Vs.o. + iWs.o.)h(r) ·
{

�

−(�+ 1)

}]
u

(±)
�j (kr)= 0. (10.1)

Here: V,W are real and imaginary parts of the central potential, VC the Coulomb
potential, and Vs.o.,Ws.o. real and imaginary parts of the spin-orbit potential, es-
pecially important for die description of polarization observables. For neutrons the
Coulomb term vanishes. The solution of this equation is part of the total scattering
function

Ψ = 1

kr

∑
�jλ

i�
[
4π(2�+ 1)

]1/2〈�0sμ|jm〉〈�λsν|jm〉u(±)
�j (kr)Y λ

� (θ,φ)χμ
s eiσ�

(10.2)
with

u�j →r→∞
1

2i

[
e−i(kr−ηS ln 2kr−�π/2) − e2iδ�j ei(kr−ηS ln 2kr−�π/2+2σ�)

]
. (10.3)

δ�j are the complex nuclear scattering phases, σ� = argΓ (1+ �+ iηS) the Coulomb

scattering phases, η
j
� = e2iδ�j the “reflection coefficients”, ηS = Z1Z2e

2/�v the

Coulomb (or Sommerfeld) parameter (see Eq. (2.2)), and k =
√

2μEc.m.
kin /�2 the

entrance-channel wave number.
The potential form factor f (r) is defined in analogy to the shape of the usual

nuclear density or potential distributions that are used in the classical shell model
(Woods-Saxon form). The absorption occurs predominantly at the nuclear surface.
Thus, as form for g(r) at low energies one chooses the derivative of the Woods-
Saxon-form factor, and for the spin-orbit term h the Thomas form g(r)/r . At higher
energies more absorption in the nuclear volume is plausible, which is taken into
account by a gradual transition from the surface absorption to volume absorption.

The best sets of parameters have been obtained by fits with χ2 minimization to
a large number of data sets of cross sections as well as analyzing powers. The latter
are important for fixing the ( �L · �S) potential and removing typical ambiguities in
the potential parameters. A few of these parameter sets have become standards for
the optical model. For nucleon scattering the parametrization most used is that of
Greenlees and Becchetti [BEC69], especially because they provide a global set of
parameters (i.e. valid over a large region of the periodic table). However, in special
cases e.g. near doubly-magic nuclei this set is not as good as a single fit. It is interest-
ing that the depth of the real potential corresponds closely to that of the shell model
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Fig. 10.1 Form factors of the
optical model. Upper:
Woods-Saxon form of the real
part f . Center: Derivative
Woods-Saxon form g = f ′ of
the imaginary part. Lower:
Sliding-transition form of the
surface-to-volume imaginary
part as function of energy

potential, similarly for the LS term. For light projectiles consisting of A nucleons
(deuterons, α particles etc.) one has potential depths that are A-fold the nucleon po-
tential depths. For heavy-ion scattering there are quite different approaches, partly
with very shallow potentials. Figure 10.1 shows the form factors and the behavior
of imaginary potentials with energy. It can only be mentioned in passing that steps
to found the optical potentials on more microscopic grounds have been undertaken
by creating folding potentials. In these the potential of one nucleon of the projectile
with the target nucleus is folded with the nucleon density of the projectile nucleus
and vice versa, or the same for both nuclei (double folding potentials).

10.4 Direct (Rearrangement) Reactions

The multitude of these reactions may be classified:

• Reactions without change of the mass number

– Elastic potential scattering (see above; description by the optical model).
– Direct inelastic scattering [(p,p′γ ), (α,α′), . . .]. It leads preferentially to col-

lective nuclear excitations (such as rotation, vibration etc.).
– Quasi-elastic (charge-exchange) processes ((p,n), (n,p), (3He, t), (14N, 14C),

. . .). These lead e.g. to isobaric-analog states of the target nucleus.

• Reactions with change of the mass number

– Pickup reactions [One-nucleon transfer: (p, d), (d, 3He), (d, t), . . . , few- or
multi-nucleon transfer: (p,α), (d, 6Li), . . . ].

– Stripping reactions [One-nucleon transfer: (d,p), (d,n), (3He, d), . . . ) few- or
multi-nucleon transfer: (6Li, d), (α,p), (3He,p), . . . ].

– Knockout reactions [(p,α), (p,p′), . . . ].
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Fig. 10.2 Global fit of the optical model to elastic scattering data of 14.5 MeV polarized protons
for a large nuclear mass range. The cross sections are normalized to the Rutherford cross sections
(i.e. to 1 at 0◦), the analyzing powers are 0 at 0◦. The arrows indicate the systematic variation of
characteristic diffraction maxima with the target mass. Adapted from Ref. [BEC69]

– Direct breakup processes like knockout with few-particle exit channels
[(p,pp), (α,2α), . . . ].

– Induced fission is a special case of a rearrangement reaction resulting in larger
debris.

– Processes of higher order (multi-step processes via excited intermediate states,
coupled channels).

Here only the simplest case of the stripping reaction will be discussed. The many
details of direct interaction processes are subjects of a large number of books, see
e.g. Refs. [AUS70, SAT83, GLE63, GLE83]. Standard computer codes such as
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Fig. 10.3 Angular and
energy dependence of the
cross section of elastic proton
scattering from 90Zr
calculated with standard
Greenlees-Becchetti
parameters of the optical
model. The interference
structure of the angular
distributions may be
interpreted as “resonant”
(single-particle) structures of
the excitation function with
widths typical for fast (i.e.
direct) processes. They are
also analogous to diffraction
structures in classical optics

DWUCKn (distorted wave code) and CHUCKn (coupled channels distorted wave
code) [KUNZ] are available. For induced nuclear fission see Sect. 11.4.1. Fig-
ure 10.2 shows the systematics of the optical-model description with mass number.
Figure 10.3 depicts the diffraction-like structures of the OM with energy and angle.

10.5 Stripping Reactions

Already a semi-classical Ansatz provides a qualitative picture of the angular distri-
butions of stripping reactions. It explains the expected behavior with the assump-
tion of a rapid process that is localized at the nuclear rim and is non-equilibrated.
The wave-number vector of the incoming deuterons is �kd, those of the transferred
nucleon and of the outgoing nucleons are �kn and �kp, respectively. They form a mo-
mentum diagram, from which the connection between a preferred scattering angle
θ and the transferred momentum and also the angular momentum can be deduced:

pnR = �knR = ��n. (10.4)

For small θ

θ0 ≈ kn

kd
= �n

kdR
. (10.5)

Because of the quantization of � there are discrete values of θ increasing with �.
This qualitative picture is not changed when calculating the angular distributions
quantum-mechanically. As an example for the reaction 52Cr(d,p)53Cr the angles of
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Fig. 10.4 Characteristic and systematic features of the stripping maximum as function of the trans-
ferred orbital angular momentum �. The arrows indicate the increase of the reaction angle of the
stripping peak with �. Adapted from Ref. [EHR67]

the stripping maximum in calculated in different ways are

θDWBA θPWBA θs.c.

�= 0 00 00 00

�= 1 180 130 130

�= 2 340 190 260

�= 3 490 300 390

�= 4 640 400 520

(10.6)

The measured angular distributions of the cross sections show—in addition to
diffraction structures—marked stripping maxima, which often allow the determi-
nation of the angular momentum of the transferred nucleon. An example is shown
in Fig. 10.4 for the stripping reactions Zn(d,p) from different Zn isotopes to dif-
ferent final states at Ed = 10 MeV, selected according to the transferred angular
momentum �.

Historically this feature was (and still is) important for the assignment of the
final-nuclear states of a reaction to orbitals in the one-particle shell model. The
energy relations in stripping reactions are such that the transferred nucleon near
magic shells is preferentially inserted into low-lying shell-model states.

Because of the spin-orbit splitting the complete assignment requires that also the
total angular momentum j of the transferred nucleons is known. A good method
is the measurement of the analyzing power of the stripping reaction, i.e. the use of
polarized projectiles. In many cases the distinction between the two possibilities for
j can be made just from the sign of the analyzing power alone. An example is shown
in Fig. 10.5 where the transitions to the p1/2 and p3/2 are clearly distinguished.

For an intuitive description of this fact there exists again a simple semi-classical
model [NEW53]. It is assumed that the interaction happens at the nuclear surface
and that we have a relatively strong absorption in the nuclear matter. Thus the front
side of the nucleus directed towards the projectile contributes more strongly to the
reaction than the backside of the target nucleus. In the front part the orbital angular
momentum vector points upward perpendicularly to the reaction plane whereas in
the back half the orbital angular momentum points down. If the incident deuteron is



10.5 Stripping Reactions 173

Fig. 10.5 Sensitivity (sign!)
of the analyzing power of the
stripping reaction to the total
angular momentum j of the
transferred nucleon. Adapted
from Ref. [YUL68]

polarized up or down perpendicularly to the scattering plane—under the assumption
of the existence of a spin-orbit force—the transferred nucleon in the scattering to the
left ends preferentially in a state with j = �+ 1/2 for the up case, in the down case
with j = �− 1/2. The measured analyzing power

Ay = 1

Pd

Nup −Ndown

Nup +Ndown
, (10.7)

will show opposite signs for the two cases. This behavior has been confirmed for
many examples not only for stripping reactions. If one wants to know the degree,
to which the transition considered is a single-particle transition the spectroscopic
factor has to be determined. For that—at least approximately—quantitative theories
are required (DWBA, CC-DWBA).

Because the single-particle strength is often strongly fractionated by the resid-
ual interaction, i.e. spread out over many states in a range of energies spectroscopic
investigations on very many final nuclear states are necessary to make sure that all
states belong to such a multiplet. Their strengths follow approximately a gaussian
shape with a width proportional to the strength of the residual interaction—a typical
strength-function and intermediate-structure behavior. Often these states are close
together and high detector resolution to get a complete picture is necessary, i.e. one
must be sure to observe all states in order to correctly compare with theories (com-
pleteness). Especially useful tools for this purpose are magnetic spectrographs with
high resolution at tandem Van-de-Graaff accelerators, also with polarized particle
beams (for more details see Sect. 17.3.3).
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10.6 T Matrix and Born Series

10.6.1 Integral Equations

Starting from the Schrödinger equation

HΨ =EΨ, (10.8)

which may be written

(E −H)Ψ = 0 (10.9)

with the Ansatz

H =H0 +Uα (10.10)

(where α designates the reaction channel formed by a and A) and

H0 =Ha +HA − �
2

2μ
∇2

α, (10.11)

two equations (an inhomogeneous and a homogeneous equation) result:

(E −H0)|Ψ 〉 = Uα|Ψ 〉, (10.12)

(E −H0)|Φ〉 = 0. (10.13)

The formal solution of the inhomogeneous equation is

∣∣Ψ (+)
〉= lim

ε→0

1

E −H0 + iε
Uα

∣∣Ψ (+)
〉
. (10.14)

This solution already contains the boundary condition of an outgoing wave and the
avoidance of poles in the complex E or k plane. It is an integral equation. The gen-
eral solution of the inhomogeneous equation is the sum of this special solution and
the general solution of the homogeneous equation (this is a plane incident wave):

∣∣Ψ (+)
〉= |Φ〉 + lim

ε→0

1

E −H0 + iε︸ ︷︷ ︸
G0

Uα

∣∣Ψ (+)
〉
. (10.15)

This solution contains the solution function only implicitly. The solution is obtained
iteratively with the plane wave as starting function. The resulting Born series may
then be terminated at any iteration step.

∣∣Ψ (+)
〉= |Φ〉 +G0U |Φ〉︸ ︷︷ ︸

1st Born approximation

+G0UG0U |Φ〉 + · · · . (10.16)
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The form of G0 is obtained from the solution of the inhomogeneous equation with
a δ potential, the (Green’s function)

G0
(�r, �r ′)=− 1

4π

eik|�r−�r ′|

|�r − �r ′| . (10.17)

With this we have the explicit form of the Lippmann-Schwinger equation

Ψ (+) = ei�k�r − 1

4π

∫
eik|�r−�r ′|

|�r − �r ′| UΨ
( �r ′)d �r ′. (10.18)

Asymptotically with

1

|�r − �r ′|
−→
r→∞

1

r
and |�r − �r ′| −→r→∞ r − �r

r
�r ′ (10.19)

the asymptotic Lippmann-Schwinger equation results

Ψ (+)(�k, �r)= ei �ki �r − eikr

r

[
μ

2π�2

∫
e−i�k �r ′V

( �r ′)Ψ (+)
(�k, �r ′)d �r ′

]
. (10.20)

The comparison with the usual Ansatz leads to the scattering amplitude (with V =
(�2/2μ)U )

f (θ,φ)=− μ

2π�2

∫
e−i�k �r ′V

( �r ′)Ψ (+)
(�k, �r ′)d �r ′ = − μ

2π�2
〈Φ|V ∣∣Ψ (+)

〉
(10.21)

and—after normalization—to the incident particle flux

f (θ,φ)=−μ(2π)2

�2
〈Φ|V ∣∣Ψ (+)

〉
︸ ︷︷ ︸

T-Matrix Tfi

. (10.22)

The relation between T - and S-matrix is

Sfi = δf i − i(2π) · c · δ(�ki, �kf )δ(Ei,Ef ) · Tfi. (10.23)

Only for elastic scattering is δf i �= 0.

10.7 Born Approximation

10.7.1 First Born Approximation = PWBA = Plane Wave Born
Approximation

As indicated in Eq. (10.16) the insertion of the incident plane wave Φ also as a start
solution function in the Born series and truncating it after the first term

∣∣Ψ (+)
〉= |Φ〉 +GV |Φ〉 (10.24)
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makes the integral equation directly solvable. In analogy to the procedure discussed
above we obtain the scattering amplitude

f (θ,φ)=− (2π)2μ

�2
〈Φ|V |Φ〉 (10.25)

and from this all observables. The result is the same as obtained by inserting plane
waves into Fermi’s Golden Rule.

10.7.2 Distorted Wave Born Approximation = DWBA

In the framework of this First Born approximation an improvement can be reached
by using waves, which are “distorted” in the nuclear and Coulomb field. These
waves contain diffraction as well as absorption contributions and are described by
the optical model of elastic scattering for the relevant entrance and exit channels. An
example: For the description of the transfer reaction 40Ca(d,p)41Ca the wave func-
tions are needed that were obtained from best-fits of optical potentials to scattering
data of 40Ca(d, d)40Ca and 41Ca(p,p)41Ca at the proper channel energies. Since
41Ca targets are not available the scattering 40Ar(p,p)40Ar was measured, which—
because of the weak A dependence of the optical-model parameters—is justified,
see Fig. 10.6.

10.8 Details of the Born Approximations

Here one uses the first Born approximation, i.e. the first term of the Born series.
Starting from Fermi’s Golden Rule of perturbation theory, which predicts for the
differential cross section

dσ

dΩ
= (2Ib + 1)(2IB + 1)

2π2�4
μiμf

kf

ki

|Tif |2, (10.26)

one has to make assumptions about the transition matrix element.
In the Plane Wave Born Approximation PWBA (also: Butler theory) for the in-

coming and outgoing waves plane waves are used. Since the radial wave functions
are Bessel functions one finds a simple diffraction pattern for the cross section

dσ

dΩ
∝ [j�(kR)

]2
. (10.27)

For illustration Fig. 10.7 shows the few lowest-order spherical Bessel functions
squared. The angle dependence of the stripping maximum is contained only in the
momentum relation k2 = k2

in + k2
out − 2kinkout cos θ . Only in a few simple cases the
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Fig. 10.6 Description of observables of the transfer reaction 40Ca(d,p)41Ca to several final states
in 41Ca by DWBA: f7/2 ground state (bottom right), excited states p3/2 at Ex = 1.95 MeV (center)
and p1/2 at Ex = 3.95 MeV (top right). The “distorted waves” were determined by fitting cross
sections and polarization data of the elastic scatterings of the (d,p) entrance and exit channels by
the optical model at the appropriate energies Ed = 7.0 MeV, Ep = 12 MeV (14.5 MeV for the
analyzing power). From Ref. [YUL68]

Fig. 10.7 The behavior of
the squares of the
lowest-order spherical Bessel
functions j�(kr) as functions
of x = kr

angular distribution near the maximum are satisfactorily described by PWBA. It also
makes no statements about polarization observables and contains no information
about nuclear structure.
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Better results at least for forward angles are obtained with the Distorted Wave
Born Approximation DWBA. It was formulated with a number of additional and
far-reaching assumptions:

• In the entrance and exit channels distorted waves are used, i.e. the wave functions
are the solutions obtained from fits of the optical model (OM) to the elastic-
scattering data in each pertaining channel at the proper channel energy. E.g. for
the description of the reaction A(d,p)B the OM wave functions from the fit to the
data of the scattering A(d,d)A as well as of B(p,p)B are needed. Thus—still in
the first Born approximation—the diffraction and absorption of the incoming and
outgoing waves in the nuclear (and eventually the Coulomb) field, as well as the
effect of the LS potential (see also Fig. 10.6) are taken into account.

• The nuclear initial and final states are shell-model states.
• The finite range of the nuclear forces is taken care of by a finite-range or even

zero-range approximation.
• The T matrix is expanded into partial waves belonging to fixed angular-

momentum transfer.
• The transfer matrix is factorized into a nuclear-structure dependent and into a

kinematical part.

Thus the cross section reads

dσ

dΩ
= μaμb

π�4

(
mB

mA

)4

× 2JB + 1

(2JA + 1)(2sa + 1)

1

kakb

∑
�sj

[
|A�sj |2

∑
m

∣∣β�m
sj

∣∣2
]
. (10.28)

The experimental cross section is a product of a fit parameter, the spectroscopic
factor S�j , and a theoretical cross section calculated in the framework of the DWBA
with the assumption of single-particle states:

(
dσ

dΩ

)�j

exp
= S�j

(
dσ

dΩ

)�j

DWBA
. (10.29)

In a stripping process the spectroscopic factor is the square of the amplitude
of a fragment of a single-particle state of the final nucleus. Because of this frac-
tionation (which in reality is caused by the residual interaction of the many other
nucleons) into many states with equal quantum numbers the strengths of all these
states have to be summed up. If a complete collection from all these states is possi-
ble one obtains the total strength, which can also be calculated because the number
of nucleons N in a subshell is known. Therefore sum rules can be applied, e.g. for
single-particle stripping

∑
S�j = (2J +1). Mathematically the spectroscopic factor

is the overlap integral between the anti-symmetrized k-particle final-nuclear state
ΨA(i), into which the nucleon is inserted, and the single-particle configuration of
the anti-symmetrized (k − 1)-particles target, the nuclear ground state (core), and
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the single-particle wave function of the transferred k-th particle Ψ (j). It thus gives
the probability, with which a certain state is present in this configuration. When
averaging over the strength distribution of all states that are fractions of one single-
particle state (e.g. while assuming a Breit-Wigner distribution function) the position
of the average energy provides the energy of the single-particle state, whereas the
width of the distribution is a measure of its lifetime, the (spreading width) Γ ↓. It
measures the decay of the single-particle state into the real nuclear states, split and
spread out by the residual interaction, and thus its strength.

10.9 Exercises

10.1. Experiments in the 40Ca(d,pi)
41Ca∗ reaction for two of many transitions to

final states in 41Ca show marked stripping peaks at weakly but ≈ linearly
varying reaction angle as function of the incident deuteron energy.

• θc.m. shifts from ≈ 20◦ at Ed = 7 MeV to 13◦ at Ed = 12 MeV for the
transition to the state with Ex = 4.19 MeV.

• θc.m. shifts from ≈ 40◦ at Ed = 7 MeV to 32◦ at Ed = 12 MeV for the
transition to the state with Ex = 6.14 MeV.

Find the orbital angular momentum � transferred by the neutrons for the two
transitions. Are the variations with the incident energy consistent with the
assignments?

10.2. Similarly transitions in the 68Zn(d,p)69Zn reaction at Ed = 10 MeV show
stripping peaks at angles θ .

Ex (MeV) θc.m.

0.0 ≈ 16◦
0.44 ≈ 42◦
0.55 ≈ 35◦
2.4 ≈ 0◦
2.65 ≈ 23◦

Assign the transferred orbital angular momenta � to the different final
states.

10.3. Apply the Newns (absorption) model to two different transitions with trans-
ferred �= 1 to assign j = �± 1/2 in 40Ca(d,p)41Ca to the final states with
Ex = 1.95 MeV that has a positive analyzing power Ay in the stripping peak,
and Ex = 3.95 MeV with Ay < 0. Check this also for two transitions in
208Pb(d,p)209Pb at Elab. = 12.3 MeV, both to final states assigned to � = 2,
but with different total angular momentum j = �± 1/2, at Ex = 2.54 MeV,
with Ay ≈+0.4 and at Ex = 1.57 MeV with Ay ≈−0.3. (In the shell model
the energy splitting of states with equal � intodoublets with different j is a
consequence of the (�� · �s) potential).
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Fig. 10.8 Fractionation
(“spreading”) of a d5/2 state
in 61Ni by the residual
interaction, forming a
strength function with a
characteristic spreading width

10.4. An experimental evaluation of the 208Pb(d,p)209Pb transition to the Jπ =
9/2+ ground state of 209Pb gave a spectroscopic factor of S = 1.01± 0.074,
whereas the spectroscopic factor for a transition in 207Pb(d,p)208Pb to the
first excited state with Jπ = 3− in 208Pb at Ex = 2.62 MeV gave S = 0.06.
However, for the neighboring particle-hole doublet states in 208Pb with Jπ =
4−,5− values of S = 0.82 and S = 0.9, respectively, were determined. Dis-
cuss the character of the different states.

10.5. Using a magnetic spectrograph many d5/2 states (�= 2), clustering around a
certain excitation energy E0, in the reaction 60Ni(d,p)61Ni have been identi-
fied, see Fig. 10.8. Assuming that all states belong to one single-particle state
(and that all states have been found and are thus fulfilling a sum rule) with
the above quantum numbers, fractionated and spread out over a wider energy
region, propose a method to determine the location of the s.p. state and the
spreading width Γ ↓ of the corresponding strength function (this is an “inter-
mediate structure” with fine structure, see Chap. 12). Check the result with
the s.p. shell model. Which interaction fractionates and spreads the s.p. state?
What does the width Γ ↓ tell us?
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Chapter 11
Models of Reactions—Compound-Nucleus (CN)
Reactions

11.1 Generalities

Resonances are a very general phenomenon in nature and therefore in all of physics.
In classical physics they appear when a system capable of oscillations is excited with
one or more of its eigenfrequencies, which—depending on the degree of damping—
may lead to large oscillation amplitudes of the system, see e.g. Ref. [FEY77]. Nu-
clei are no exception. When tuning the system (changing the exciting frequency)
these amplitudes pass through a resonance curve of Lorentz form. In particle physics
most of the many known “particles” actually appear as resonances, i.e. as quan-
tum states in the continuum, which decay with characteristic widths (or equiva-
lently: lifetimes). For nuclear excitations the theoretical description goes back to
G. Breit and E. Wigner [BRE36] and in its simplest form describes isolated res-
onances (“single-level formula”). More complicated cases are: interference with
background from direct (fast) processes and overlapping states of equal quantum
numbers (spins and parities) which require “multi-level formulas” because here
the quantum-mechanical interference leads to level repulsion and asymmetric reso-
nance shapes. The theory is equally applicable to compound as well as intermediate-
structure resonances.

Resonances can be discussed in the energy picture where as function of energy
excursions of Lorentz form (Breit-Wigner form) with a width Γ appear, but also in
the complementary time picture where they appear as quantum states in the contin-
uum, i.e. as states, which decay with finite lifetime τ . Between them there is the
relation

Γ = �/τ. (11.1)

In nuclear physics resonances appear in the continuum (i.e., in scattering situa-
tions, at positive total energy) when the projectile energy in the c.m. system plus the
Q value of the reaction just equals the excitation energy of a nuclear state.

The excitation functions of observables such as the cross section show charac-
teristic excursions from the smooth background when varying the incident energy.
The background may be due to a direct-reaction contribution from Coulomb or
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Fig. 11.1 The excitation of single resonances, overlapping resonances (with and without Ericson
fluctuations) and giant resonances as functions of the energy in the continuum region above the
bound-state energy

shape-elastic scattering or—in a region of high level density—may be the energy-
averaged cross section of unresolved overlapping compound resonances; in this case
resonant excursions would be due to doorway mechanisms. Likewise the scattering
phases and scattering amplitudes change in characteristic ways over comparatively
small energy intervals. Nuclei may be excited into collective modes such as rotations
and/or vibrations of a part of the nucleons. At still higher energies new phenomena
with high cross sections in charged-particle, neutron, γ , and π induced reactions ap-
pear involving up to all nucleons of a nucleus, the Giant Resonances, see Sect. 12.3.
Figure 11.1 shows schematically the phenomena in different energy regions.

11.2 Theoretical Shape of the Cross Sections

A model assumption for resonances is—in contrast to direct processes—that the
system goes via an intermediate state from entrance into the exit channel. For this
case perturbation theory gives the following form of the transition matrix element

〈Ψout|Hint|Ψin〉 = const

E − ẼR

. (11.2)

ER is the energy of the nuclear eigenstate. However, since it is a state in the con-
tinuum it is not a stationary but one, which decays in time. Such states are best
described by giving it a complex eigen-energy:

ẼR =ER + iΓ /2. (11.3)
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The interpretation of the imaginary part is: the time development of a state has the
form eiẼt/�, on the other hand the state decays with a lifetime τ , whence

1/τ = Im(Ẽ)= Γ/2. (11.4)

The resonance amplitude thus has the form:

g(E)= F(E)

E −ER + iΓ /2
. (11.5)

The meaning of F(E) has to be determined. In the sense of Bohr’s independence
hypothesis formation and decay of a resonance are independent (i.e. decoupled).
Therefore, one writes the amplitude as the product of the probability amplitude for
its formation and its probability of decaying into the considered exit channel. In
general, for one formation channel (the entrance channel c) there will be several
exit channels c′.

The width Γ of the Breit-Wigner function is inversely proportional to the forma-
tion probability P and is the integral over the cross section in the energy range of
the resonance:

P =
∫

σaAvaA

V
· Vp2

aAdpaA

2π2�3
=
∫

σaAk2
indE

2π2�
≈ k2

inF(ER)

2π2�

∫
dE

(E −ER)2 + Γ 2/4

= k2
inF(ER)

π�Γ
. (11.6)

In equilibrium this is equal to the probability that the resonance re-decays into the
entrance channel (purely elastic case). A measure for this is the partial width ΓaA

formed similarly as Γ , thus:

ΓaA/�= k2
inF(ER)

π�Γ
, (11.7)

F(ER)= π

k2
aA

ΓaAΓ. (11.8)

By definition Γ is the sum of all partial widths over the open channels. Thus, the
branching ratio for the decay into one definite channel bB ≡ c′ is equal to Γc′/Γ
and the Breit-Wigner cross section for the formation of the resonance via channel c

and the decay via channel c′ is

σ(E)= π

k2
in

· ΓcΓc′

(E −ER)2 + Γ 2/4
. (11.9)

This derivation is simplified and must be carried out—when there is interference
with a direct background contribution and for the description of a differential cross
section via a partial-wave expansion near a resonance—with complex scattering
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amplitudes. For elastic s-wave scattering it results in a resonant scattering amplitude
of the form:

Ares = iΓaA

(E −ER)+ iΓ /2
. (11.10)

When a direct background is present, then, besides the pure resonance term and
the pure direct (smooth) term, a typical interference term appears, which may be
constructive or destructive. For σ we have then:

σtot = |Ares +Apot|2 = σres + σpot + 2Re
(
AresA

∗
pot

)
(11.11)

where Apot is the amplitude of the weakly energy-variable potential scattering.

11.3 Derivation of the Partial-Width Amplitude for Nuclei
(s Waves Only)

The connection between the resonant scattering wave function and the wave func-
tion of the eigenstate of the nucleus is made by the R-matrix theory. Their basic
features (for more details see [LAN58]) are approximately:

• The two wave functions and their first derivatives are matched continuously at
nuclear radius (edge of the potential or similarly).

• The condition for a resonance is equivalent with the wave-function amplitude
in the nuclear interior taking on a maximum value. This happens exactly if the
matching at the nuclear radius occurs with a wave function with gradient zero
(horizontal tangent).

Figure 11.2 illustrates the conditions for resonance. The two conditions may be
summarized such that both logarithmic derivatives L (L0 for pure s waves) at the
nuclear radius are exactly zero. With the form of the wave function in the external
region

u0(r)= e−ikr − η0e
ikr , r > a (11.12)

and the wave numbers in the external region k in the nuclear interior κ we obtain

L0(E)=
(

a

u0

du0

dr

)
r=a

, (11.13)

which leads to the scattering function η0 as function of L0:

η0 = L0 + ika

L0 − ika
e−2ika. (11.14)

Inserting this scattering function into the known expressions for elastic scattering
and absorption (and with L0 = Re(L0)+ iIm(L0)) the result is
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Fig. 11.2 Boundary
conditions at the nuclear
(potential) surface for the
appearance of a resonance in
the excitation function

σel = π

k2
in

|1− η0|2 = π

k2
in

∣∣∣∣
[
e2ika − 1

]− 2ika

Re(L0)+ i(Im(L0 − ka))

∣∣∣∣
2

(11.15)

and

σabs = π

k2
in

(
1− |η0|2

)= π

k2
in

[ −4kinαIm(L0)

(Re(L0))2 + (Im(L0 − ka)2)

]
. (11.16)

By expanding Re(L0) in a Taylor series and terminating it after the first term, by
comparison—besides obtaining the resonance-scattering amplitude (with Apot ∝
e2ika − 1)—one obtains the results:

σel = π

k2
in

∣∣∣∣
(
e2ika − 1

)+ iΓaA

(E −ER)+ iΓ /2

∣∣∣∣
2

(11.17)

σabs = π

k2
in

ΓaA(Γ − ΓaA)

(E −ER)2 + Γ 2/4
. (11.18)

One sees that in agreement with our definition of absorption this encompasses all
exit channels except the elastic channel.

11.4 Role of Level Densities

In nuclei the appearance and description of resonant states depends on the level den-
sity in the energy region considered. The number of possibilities to build a nuclear
state from single particles and single holes (described in the shell model) increases
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Fig. 11.3 Level-density
parameter a in a Fermi-gas
model as determined
empirically from different
sources such as counting of
isolated neutron resonances.
a follows approximately a
A/7.95 or A/8 relation. The
necessity of corrections such
as shell corrections is evident

strongly with energy leading to an approximately exponential increase of the level
density ρ(Ex) = 1/D with excitation energy Ex (D is the (average) distance be-
tween neighboring levels). Also, because the number of configurations that can be
formed from single-particle orbitals increases with the number of nucleons outside
closed shells the level densities increase with A but also show the effects of shell
closures and also deformations. The standard model for the statistical description of
nuclear level densities (whose origins go back to Bethe [BET36, BET37, BET38])
is the Backshifted Fermi-gas model, e.g. [LAN54, HUI69, VON69, DIL73]. It de-
scribes the level density by an exponential term with excitation energy (often ex-
pressed as nuclear temperature U) and a spin-dependent term:

ρ(A,E, I,π)= 2I + 1

24
a1/2

(
�

2

2θ

)3/2 exp 2[a(E −EI )]1/2

(E −EI )2
, (11.19)

where a is the level density parameter and a ≈ 7.95/A, EI = (�2/2θ)I (I + 1) with
EI the energy of a rigidly rotating spherical nucleus with spin I . Figure 11.3 shows
the level-density parameter a as function of the mass number A. This description
in the framework of a statistical model was first published in Ref. [GIL65], and
refinements can be found in the Reference Input Parameter Library [RIPL].

The appearance of observed quantities such as excitation functions of unpolar-
ized cross sections but also of polarization observables depends not only on the
basic reaction mechanism, but on the quantity Γ/D with D = 1/ρ as well as the
experimental resolution �E, which acts as an averaging interval. In order to see
intermediate or coarse structures in the presence of fine structure also artificial av-
eraging (with an averaging interval I) may be performed. Isolated resonances have
Lorentz (Breit-Wigner) form whereas energy averaging leads to gaussian or other
(trapezoidal) shapes. Both are then folded and must be disentangled to obtain the
true resonance parameters. The direct observation of the true isolated-resonance
shape requires Γ/D < 1. Γ/D > 1 leads to Ericson fluctuations that are only ob-
servable if �E is not much larger than Γ . The systematics of Γ is discussed in
Sect. 11.5.4.
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11.4.1 Induced Nuclear Fission

Besides naturally occurring spontaneous fission of nuclei beyond a certain mass
number, which was discovered in 1940, the process of induced fission was discov-
ered by Otto Hahn et al. in 1939 [HAH39, HAHN39]. This form of fission may be
induced by bombardment with slow or fast neutrons, γ ’s, but also with charged par-
ticles. A special variant are fusion reactions of two heavy projectiles/target nuclei
leading to heavier (eventually superheavy) compound systems in which the decay
by alpha emission and by fission compete, see also Sect. 15.3. Another variant is the
fissioning of highly excited (rotating) nuclei due to centrifugal forces, see Fig. 13.5.
Earlier surveys of fission are Refs. [WIL64, BRA72, PAU73, VAN73]. A recent text
with many references is Ref. [KRA12].

Both processes, α emission and fission, also because of large Z values, are gov-
erned by the Coulomb barrier. Spontaneous fission occurs by tunneling through this
barrier and has correspondingly large half-lives T

f

1/2 for nuclei near Uranium (ex-

amples: 7.04 · 108 a for 235U; 4.468 · 109 a for 238U). At larger mass numbers the
Coulomb barrier is increasingly modified by shell-model effects (shell corrections,
see e.g. [STR66]) leading to double- or triple-humped barriers, the phenomenon of
fission doorways and shortened lifetimes.

If additional energy is provided induced fission occurs, especially by neutrons,
which do not have to surmount a Coulomb barrier. Two basic possibilities exist: The
negative neutron separation energy suffices to lift the energy of the system n+ A

above the energy of the Coulomb barrier; then slow (thermal) neutrons will induce
fission, such as for 235U; or higher energy of the neutrons is required such as for
238U. Generally there is a clear odd-even effect caused by the pairing of nucleons
with more tightly bound configurations with nucleons paired with antiparallel spins
compared to unpaired configurations. Of course, in detail the behavior is modified
by the shell model. Figure 11.4 shows the energetic situation for two model cases of
barrier shapes.

The true shape of the barrier is an individual property of each nuclide and de-
pends on collective degrees of freedom such as deformation and shell-model de-
grees of freedom. The shapes shown in Fig. 11.4 have to be understood as a cut
across a deformation landscape spanned above the standard two deformation param-
eters β and γ in the direction of the most probable path of the fissioning nucleus.
Normal-deformed nuclei have typical axes ratios of 1.4:1, superdeformed nuclei in
the second minimum about 2:1. New evidence for triple-humped fission barriers has
been obtained with high-resolution (γn) (sub-barrier photofission) experiments on
uranium isotopes. The third minimum of deformed nuclei corresponds to hyperde-
formed shapes with axis ratios of ≈3:1 [CSI13] and is probed by its influence on
intermediate-structure resonances decaying by transmission through the two barri-
ers.

The fission process is interesting for its basic nuclear physics as well as for its ap-
plications which cannot be discussed in detail here, but for which ample references
exist, especially on the technical and societal aspects of nuclear energy production
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Fig. 11.4 Two schematic
assumptions about the shape
of the fission barrier. The
upper picture is the simple
liquid-drop model whereas
the lower picture contains
more (however schematic)
information on realistic
shapes of the double-humped
barrier where a second
minimum exists that is
capable to support isomeric
nuclear states. These states
decay faster than from the
first minimum and may form
an intermediate structure, on
which fine-structure states
from the first-minimum
fission are superimposed
(fission-doorway mechanism,
see Sect. 12.4)

and nuclear weapons. Only a few keywords for some special features must suffice
here:

• The (a)symmetric mass distributions of the fission products.
• The fission process is accompanied by neutron multiplication enabling a chain

reaction used in reactors and weapons.
• The fission products—after the first step of the fission process—have high neutron

excess and are therefore highly radioactive with partly long-lived isotopes.
• Transuranium nuclei produced by neutron capture and decays such as 239Pu are

also long-lived, radioactive, partly poisonous, and create enormous problems as
nuclear waste which must be stored safely or transmuted (see also Sect. 19.9).

11.5 Single Resonances

11.5.1 General Features

The existence of (isolated) single resonances is visible by the following features:
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Fig. 11.5 Pure (elastic) resonance form and meaning of the total width Γ (left). Resonance form
with interference of a pure resonance (Breit-Wigner shaped CN scattering) amplitude with a con-
stant elastic potential-scattering amplitude. The sign of σ el depends on the relative sign of the two
amplitudes (right)

• In cross sections (as well as in other observables) as functions of energy strong
excursions may be visible. Maxima in cross sections are due to the resonance de-
nominator. For elastic s-wave scattering the maximum value of (4π/k2

in) sin2 δ0
occurs at δ = π/2. Depending on whether the resonance is isolated and in a region
with no background or not and whether one has a cross section or a polarization
observable, the appearance of narrow resonance shows a pure Breit-Wigner shape
or has dispersion form caused by interference. This implies that also destructive
interference may occur such that the cross section is small or zero in the inter-
ference region. An example for the theoretical shape of a cross section across an
isolated (elastic) resonance without background interference and with interfer-
ence with a constant amplitude is shown in Fig. 11.5. Such a case is low-energy
(s-wave) neutron scattering, see Sect. 4.1.1. For charged particles the interfering
potential scattering (“shape elastic”) amplitude is an energy-dependent Coulomb
(Rutherford) amplitude (see Fig. 7.13).

• An essential feature is the increase of the resonance scattering phase over the
region of the resonance, ideally by +π , with a transition through π/2 at the res-
onance.

• The angular distribution at the resonance is symmetric around 90◦.

11.5.2 Alternative Description of Resonances

Argand Plot If one plots Im(fR) against Re(fR) in the complex plane with the
energy as parameter one expects in the ideal case of a purely elastic resonance the
following behavior: The complex scattering amplitude moves counter-clockwise on
a circle with the radius Γ/2, see Fig. 11.6.

Resonances as Poles in the Complex Plane In the complex energy plane (which
is two-valued because of E ∝ k2) each resonance is a zero and has as its complex
conjugate a pole in the positive energy plane. The ordinate values (Im(E)) are the
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Fig. 11.6 Schematic Argand
plot with the resonance phase
η� performing a complete
circle in the complex η� plane
and with a potential scattering
phase set to ξ� = 0. In the
case of ξ� �= 0 the phase angle
becomes δ� + ξ� and the
resonant circle is rotated by
2ξ�

Fig. 11.7 In the complex
energy plane resonances
correspond to zeros and
symmetrically located
complex conjugate poles in
the positive energy region
(i.e. in the continuum). Bound
and quasi-bound (excited)
states are locates in the
negative energy plane.
Ordinates (imaginary parts of
the state energies) are the
total widths of the states. The
connection with the scattering
phase δ� is indicated for one
resonance

total widths of the resonances and prevent the amplitudes from becoming infinite.
The scattering phase is

δR = arctan

(
Γ/2

ER −E

)
(11.20)

and passes through π/2 at resonance. Figure 11.7 explains that situation.
A good example for a measured resonance that to a large degree is isolated is

the �++ resonance in π+–p scattering. It shows only small interference with the
background. Its angular distribution is symmetric about 90◦, see Figs. 11.8 and 11.9
and its Argand plot fills the unit circle completely, i.e. there is no sign of inelasticity,
as shown in Fig. 11.10.
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Fig. 11.8 The �-resonance (also called “P33”) (here in the π+–p scattering) is one of the most
prominent resonances. It is so strong that it reaches the maximum cross section value of 8πλ̄2

allowed by the conservation of probability, which is equivalent to the unitarity of the S-matrix.
Adapted from Ref. [PER83]

Fig. 11.9 The � resonance
has an angular distribution
symmetric about π/2. The
function ∝ 1+ 3 cos2 θ on
resonance shows this to be a
Jπ = 3/2+ resonance
corresponding to an excited
state of the nucleon. Adapted
from Ref. [PER83]

An example for (resonance + Rutherford) scattering of protons from 12C with
scattering-phase analysis and Argand plot is shown in Fig. 11.11. The analysis
shown was able to determine parameters of a number of strongly overlapping reso-



192 11 Models of Reactions—Compound-Nucleus (CN) Reactions

Fig. 11.10 The Argand plot
over the � resonance fills the
unit circle nearly perfectly.
Smaller circles point to
higher-energy resonances of
the π + p system. From
[RPP08]

nances, also by analyzing polarization data together with unpolarized cross sections
[MEY73].

11.5.3 Overlapping Resonances

The energy range, in which Γ/D� 1 where the compound resonances overlap is
characterized by two possible types of excitation functions:

• The experimental resolution (where the energy spreading of the beams, kinemat-
ical broadening by the finite (solid) angle of the detectors etc. enter) �E is small:
�E
 Γ . In this case the many Breit-Wigner amplitudes overlap stochastically
and coherently. The cross sections fluctuate statistically with characteristic coher-
ence widths Γcoh, see Sect. 11.5.6, and they obey statistical distribution functions.

• The experimental resolution is bad: �E � Γ . Here we have energy-averaging
over the fluctuating cross sections (also over other observables such as polariza-
tion) such that their appearance is smooth. Because also the competing direct
processes are smooth with energy criteria for distinguishing between both have
to be developed e.g. by studying the behavior of the angular distributions.

11.5.4 Ericson Fluctuations

The phenomena of chaotic behavior of nuclear cross sections are described e.g. in
Refs. [ERI66, VOG68, ALB71, RIC74]. The usual model assumption is that in the
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Fig. 11.11 Elastic scattering
of protons from 12C. Upper
figure: Excitation functions
over a number of partly
overlapping resonances
(states of 13N, their resonance
widths are indicated). Lower
figure: Example of the
passage of the F5/2 scattering
phase through π/2 and
Argand plot belonging to the
resonance at
ER = 10.58 MeV. In the
analysis also polarization data
were included. The analysis
shows significant
contributions from
inelasticity, i.e. deviations
from the unit circle. The
(complex) phase results from
a phase-shift analysis of
differential cross section and
analyzing-power data
including a number of 13N
levels. Adapted from
Refs. [SWI66, AJZ91,
MEY73]

expressions for the S-matrix

Scc′ = SDI +
∑ acc′

(E −ER)+ iΓ /2
(11.21)

the partial-widths amplitudes acc′ = Γ
1/2
c Γ

1/2
c′ cos(Φ) of the compound-nucleus

contribution behave stochastically: their real and imaginary parts follow a statis-
tically uniform distribution with the average zero:

〈Scc′ 〉cc′ = 0, (11.22)

〈Scc′ 〉2cc′ �= 0. (11.23)

With this assumption the following features of the statistical behavior of the S-
matrix elements are predicted: Their real and imaginary parts fluctuate indepen-
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dently and follow a Gaussian distribution around the average zero. The cross section
from S2

cc′

〈Scc′ 〉2cc′ �= 0 (11.24)

fluctuates around the smooth average cross section from 〈Scc′ 〉2cc′ �= 0, which e.g.
may be described by the Hauser-Feshbach theory.

From the stochastic (chaotic) features of the amplitudes a number of predictions
follow that can, on the one hand, be used to check the basic statistical assumptions,
on the other, to obtain information about the average behavior of compound states
(not about individual levels).

• The level distances D follow a Wigner distribution

P(D)dD = πD

2〈D〉2 exp

(−πD2

4〈D〉2
)

(11.25)

about the average level distance 〈D〉. A purely stochastic distribution would be
∝ 1
〈D〉 exp(− D

〈D〉 ), i.e. would prefer small level distances. In reality levels with
equal spins and equal parity repel each other, which makes the distribution more
uniform.

• The level widths for one (the elastic) channel obey a Porter-Thomas distribution

P(x)dx = 1√
2πx

exp(−x/2)dx (11.26)

with x = Γ/〈Γ 〉. For more than one (n) channel(s) this distribution becomes a
χ2 distribution with n degrees of freedom.

• The cross sections follow a probability distribution, which in the simplest case
(one spin channel) is given by

P(y)dy = e−y (11.27)

with

y = σ

〈σ 〉 . (11.28)

This case is naturally realized for spinless particles. For N spin channels:

P(y)= NN

(N − 1)!y
N−1e−Ny. (11.29)

• There are no channel-channel correlations. This assumption has been shown to
be doubtful due to the unitarity of the collision matrix, see Ref. [MOL67].

• The correlation between the (differential) cross sections for one channel but at
different angles depends on the number of independently fluctuating spin chan-
nels and on the direct-reaction contribution. Both have the effect of reducing the
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fluctuation “amplitude”. The correlation is largest for 0◦ and 180◦ and minimal
for 90◦. The number of spin channels can be calculated, e.g. for 90◦

Neff,max = g/2 for g = even, Neff,max = (g + 1)/2 for g = odd,

with g = (2Sa + 1)(2SA + 1)(2Sb + 1)(2SB + 1). (11.30)

For the limiting angles 0◦ and 180◦ Neff,min < Neff,max and depends on the
spin structure of the reaction. The especially interesting case Neff = 1 occurs at
the spin structure 1/2+0→ 1/2+0 (in which the fluctuation is strongest). In the
general case the transmission coefficients of the optical model are needed. With
this, together with data from a measurement of such an angular correlation, the
direct-reaction contribution can eventually be derived.

• Energy (auto) correlations: The energy correlation

C(ε)= 〈σ(E)σ(E + ε)〉
〈σ(E)〉〈σ(E + ε)〉 − 1, (11.31)

for which under the above assumptions

C(ε)= 1

Neff

Γ 2
coh

Γ 2
coh + ε2

(
1− y2

D

)
(11.32)

provides the average level width (and thus the lifetime) of the CN levels. The
normalized variance

C(0)= 1

Neff

(
1− y2

D

)
(11.33)

may be used to determine the direct contribution y2
D of the reaction if the number

of spin channels is known.
• In practice a correction for the finite range of data (FRD error) has to be applied.
• Polarization observables also are expected to fluctuate randomly under the con-

ditions outlined above, due to statistical behavior of the T - or S-matrix elements.
In the simplest cases the averaging over these results in zero average polarization
(or analyzing power), see [LAM66, KUJ68]. The polarization of the particles is
equivalent to reducing the number of spin channels thus increasing the fluctuation
strength of the observables relative to that of unpolarized cross sections. The fluc-
tuation analysis of polarization quantities obtained simultaneously with the cross
sections provides an independent means to evaluate either Γcoh, yD, or Neff.

In Fig. 11.12 examples for Ericson fluctuations in proton scattering on N = 50 nu-
clei is shown. The measurements were performed in the region around E = 12 MeV
where in these nuclei very deep cross-section minima at extreme backward angles
had been found [SCH75, BER75] that were identified as diffraction minima in the
framework of the optical model, see Fig. 10.3. This small direct-interaction (DI)
contribution helps to make compound-nucleus (CN) contributions, either smooth or
fluctuating, visible. In these nuclei DI and CN contributions could be determined
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Fig. 11.12 Excitation
functions at backward angles
(p,p) elastic scattering on
87,88Sr. Because in the upper
figure energy steps of
100 keV were taken it shows
an average behavior of the
cross section that could be
described by the optical
model (with modifications for
the very deepness of the
backward minima). The
lower figures depict data
taken in 10 keV steps. The
scattering from the even-even
isotope 88Sr still shows ≈
smooth behavior whereas the
data from 87Sr shows Ericson
fluctuations. This is a direct
consequence of the very
different number Neff of spin
channels (2 vs. 200). Adapted
from Refs. [SCH75, BER75]

quantitatively and confirmed by optical-model and Hauser-Feshbach calculations,
as well as coherence widths Γcoh. Similar results were obtained for Zr, Y, and Mo
isotopes. It should be mentioned that indications for Ericson fluctuations of overlap-
ping isobaric analog resonances have been seen [HGS79].

11.5.5 Analysis of Ericson Fluctuations

There are basically two established methods of analyzing statistical fluctuations
and their distinction from single-resonances compound processes: correlations and
Fourier analysis.

Auto- and Cross Correlations Almost by definition the formation and decay
mechanism of single resonances implies that e.g. all the outgoing channels from one
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compound state are related, i.e. mathematically they will show correlations between
the cross sections of different exit channels (channel-channel or cross correlations).
However, it has been shown that, under certain circumstances, cross correlations and
their analysis may not be sensitive to even very strong correlations of resonance pa-
rameters [KLE73].

In contrast, such correlations are absent if we have stochastically fluctuating cross
sections in different exit channels that come about by squaring the contributions
of many overlapping Breit-Wigner-shaped amplitudes. Interference terms between
different (complex) amplitudes have statistically varying phases and, on average,
cancel in the cross section. Thus, in analyzing these data, nothing can be learned
about the underlying individual resonant states. However, some average quantities
may be derived.

Auto-correlations between cross sections (and in suitable cases polarization ob-
servables) at different energies, separated by an energy interval ε reveal the average
width 〈Γcoh〉 of the underlying states and can be used for an energy systematics of
this quantity. In addition the number of effective spin channels and direct-reaction
contributions may be evaluated.

Angular auto-correlations of differential cross sections as function of an angular
interval �θ yield information about the number of contributing spin channels.

Fourier Analysis Another way of obtaining information about the average widths
of the compound states is Fourier analysis. The fluctuating cross sections are treated
like a mixture of frequencies in acoustics, from which the “pure” components are
filtered out by Fourier analysis. In Ericson fluctuation analysis the main frequency
components are again the widths 〈Γ 〉. It is possible to obtain contributions with
different widths, e.g. from overlapping intermediate structures.

11.5.6 Results for Level Widths

By studying single isolated resonances and, by fluctuation analysis of the coherence
widths Γcoh for overlapping resonances as discussed before, a systematic picture of
the widths of nuclear levels can be gained. Figure 11.13 shows the systematics of
Γ over A for one excitation energy. The widths increase with excitation energy as
the number of open exit channels increases (see also Sect. 11.6.2) but decrease with
mass number A for a given excitation energy Ex .

11.6 Complete Averaging over the CN States

11.6.1 Generalities

Formally the energy averaged (integrated) cross sections can be understood as an av-
erage over the S-matrix, which leads to an understanding of the apparently different
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contributions.

〈σel〉 = πλ̄2
∑

(2�+ 1)
(
1− 〈S�〉 −

〈
S∗�
〉+ 〈|S�|2

〉)
︸ ︷︷ ︸

〈|1−S�|2〉

= πλ̄2
∑

(2�+ 1) · [∣∣1− 〈S�〉
∣∣2︸ ︷︷ ︸

→σs.e.(O,M.!)

+ (〈|S�|2
〉− ∣∣〈S�〉

∣∣2)︸ ︷︷ ︸
→〈σc.e.〉(H−F)

]
(11.34)

and

〈σr〉 = πλ̄2
∑

(2�+ 1)

〈1−|S�|2〉︷ ︸︸ ︷[(
1− ∣∣〈S�〉

∣∣2)︸ ︷︷ ︸
σabs(O.M.)

− (〈|S�|2
〉− ∣∣〈S�〉

∣∣2)︸ ︷︷ ︸
〈σc.r.〉(H−F)

]
. (11.35)

The two (averaged) cross sections σel (elastic) and σr (reaction) both consist of
two different components

• per se smooth: σs.e. (shape-elastic) and σabs (absorption), both described by the
optical model

• in principle fluctuating, but which may appear smooth due to experimental aver-
aging: 〈σc.e.〉�E (compound-elastic) and 〈σc.r.〉�E (compound-reaction). (�E is
the experimental averaging interval, either determined by the finite energy resolu-
tion of the experiment or by deliberate smoothing by the experimenter). Ericson
fluctuations are seen with sufficiently good experimental resolution.

11.6.2 Hauser-Feshbach Formalism

According to the Bohr hypothesis formation and decay of CN states are indepen-
dent, which means e.g. that the integrated cross section can be factorized:

σαβ = σ CN
α · Pβ (11.36)

with

Pβ = Γβ∑
allβ Γβ

(11.37)

and ∑
β

Pβ = 1. (11.38)

The formation cross section is described in the optical model (see above Sect. 10.3)
via transmission coefficients Tα :

σ CN
α = π�λ2(1− |ηαα|2

)= πλ̄2 · Tα. (11.39)
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Hence

σαβ = πλ̄2TαPβ. (11.40)

From the Principle of detailed balance follows:

λ̄2
βσαβ = λ̄2

ασβα (11.41)

TαPβ = TβPα (11.42)

Pα

Tα

= Pβ

Tβ

= λ= const (11.43)

∑
Pα = λ

∑
γ=all β

Tβ = 1 (11.44)

λ= 1∑
γ Tγ

(11.45)

Pβ = λ · Tβ = Tβ∑
γ Tγ

. (11.46)

The final result (for spinless particles) for the integrated Hauser-Feshbach cross
section [HAU52] is then:

σ HF
αβ =

〈
σ CN

αβ

〉= πλ̄2
α ·

TαTβ∑
γ Tγ

. (11.47)

For reactions with particles with spins we obtain

σ HF
αβ =

〈
σ CN

αβ

〉= πλ̄2
α

∑
Jπ

(2J + 1)

(2i + 1)(2I + 1)
· TαTβ∑

γ Tγ

(11.48)

where i, I , J , and π are the spins of the projectile, the target, and spin and parities
of the compound systems, resp.

Analogously and with use of the partial-wave expansion the differential Hauser-
Feshbach cross section is derived. The Racah coefficient with the symbol Z(abcd;
ef ) is a vector-coupling coefficient used for coupling of three angular momenta and
is equivalent to the 6j symbol

{
a b e

d c f

}
(11.49)

and the Wigner coefficient (−)a+b+c+dW(abcd; ef ), see Refs. [BRI71, BLA52,
VOG68] and Sect. 22.3. Here it performs the coupling of the entrance (exit) channel
spins sa, sA with the entrance (exit) orbital angular momenta �, �′ to the total angular
momenta J .
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(
dσ

dΩ

)HF

J

= λ̄2
α

4π(2i + 1)(2I + 1)

∑
LJπ

×
∑
s�s′�′

Z(�J�J ; sL)Z′
(
�′J ′�′J ′; s′L)(−)s−s′PL(cos θ)

× Tα
�Tβ

�′

∑
γ Tγ

�′′ (11.50)

where α,β, γ designate the entrance, specific exit, and all exit channels, resp., i,
I , s, s′ are the particle spins and channel spins, and � the corresponding angular
momenta.

The angular dependence of the differential cross section is governed by L, cou-
pled from � and �′. The interference terms between different amplitudes, which are
assumed in the model Ansatz to have statistically distributed phase relations cancel
and only even-order Legendre polynomials survive leading to angular distributions
symmetric around 90◦. Because vector-polarization effects result from interference
of different amplitudes this leads to the fact that in the statistical model no (energy-
averaged) polarization effects occur (however: in the regime of Ericson fluctuations
there may be fluctuations of polarization effects around zero). Both cross sections
show the factorization into entrance and exit channels and are symmetric in both
channels.

The calculation of the Hauser-Feshbach cross sections is performed using the
transmission coefficients Tl or TlJ . They are obtained by adjusting the optical-model
parameters to elastic-scattering data for the entrance channel as well as the spe-
cial exit channel considered and for all possible exit channels, specifically from the
imaginary part of the optical potential. They must be known for all energies up to
the excitation energies, which are maximally reached in the compound nucleus.

An approximation often used for heavy-ion reactions (i.e. with strong absorption)
was the sharp-cutoff model, in which the smooth transmission coefficients were re-
placed by suitable step functions changing their values at a sharp energy from zero
to one. Transitions ending in the continuum i.e. in the region of strong overlapping
of final states must be treated statistically using a level-density function as weight-
ing factor. Nuclear level densities are an important parameter that decides whether
Hauser-Feshbach (statistical) assumptions are applicable. For details on nuclear-
level densities see Sect. 11.4.

In summary, the salient features of the Hauser-Feshbach cross section are:

• The angular distributions—due to properties of the Legendre polynomials and
the angular-momentum coupling coefficients—are symmetric around 90◦. This
is evident in Fig. 11.14.

• The cross sections decrease strongly with increasing energy because with the in-
creasing number of open decay channels the transmission denominator increases
strongly. Therefore one expects that in a competition with direct processes the
latter will dominate at increasing energy, the compound processes, however, will
die out.
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Fig. 11.14 Hauser-Feshbach
angular distribution, adjusted
to data of the compound
reaction 31P(p,α0)

28Si,
averaged over
Ep = 8.5 to 11.6 MeV.
Adapted from Ref. [DAL68]

Fig. 11.15 Differential cross
section of elastic proton
scattering 25Mg(p,p)25Mg at
Ep = 6 MeV with a clear
disentanglement of direct (DI,
shape-elastic) vs. compound
(CN, compound-elastic)
scattering. From
Ref. [GAL66]

At lower energies the separation of (averaged) CN from DI processes as well as
the distinction between (fine-structure) resonances and Ericson fluctuations is not
always simple. One has to rely on angular distributions together with fitting of the-
oretical models on the one hand and correlation analyses (angular and energy auto-
correlations,and cross-correlations between different channels) on the other. An ex-
ample where this separation was achieved is shown in Fig. 11.15. The applicability
of the statistical model for the compound-elastic scattering ensures that there is no
interference between the DI and CN amplitudes and cross sections can be added.
With interference the separation of the two would be more difficult.

11.7 Exercises

11.1 The Breit-Wigner resonance cross section was derived with the following as-
sumptions:

• s-wave (�= 0) scattering only,
• No spins involved, and
• No background scattering.
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In the more general case of �≥ 0 the integrated cross section contains a term
(2�+ 1) in its partial-wave sum (see Chap. 8).

(a) Show that in this case σ across a resonance contains one such term with a
definite �, corresponding to the resonating partial wave.

(b) If there is a (nearly) constant background (such as from Coulomb or po-
tential scattering as for thermal-neutron elastic scattering) the partial phase
shift for this � is the sum of the potential (B) and the resonant (R) phase
shifts.

δ� = δB
� +

(
π(E −ER)

2Γ
+ π/2

)
. (11.51)

Show that the resulting integrated (total) cross section is a sum of three
terms: σ B, σ R, and an interference term. Sketch the possible shapes of δ�

and σ� as functions of E across ER for different background contributions
of δB

� = 0, π/4, π/2, and 3π/4.

11.2 For � = 0 (s-wave scattering) and a background from hard-sphere scattering
(see Chap. 8) derive and plot the integrated cross section across a Breit-Wigner
resonance. Indicate the width, the background contribution, and the maximum
possible cross section as functions of E.

11.3 Discuss why the interference may be destructive, sometimes leading to zero
cross section.

11.4 Single-particle states play an important role in nuclear physics (think of the
(quasi-)bound states of the shell model, but also the shape resonances de-
scribed by the optical model). Assume a square well as shape of the scat-
tering potential of a nucleus A with s-wave neutrons of a potential depth of
V0 = 50 MeV and a potential radius of R = 6.5 fm.

(a) Are there bound states of the compound system A+ n and what are their
positions on the energy axis?

(b) What happens at E = 0, what at E > 0?
(c) Why are resonances also called “states in the continuum” and what is the

physical meaning of the width Γ ?
(d) Verify that the internal wave function is

u0 =A sin(κR) with κ =√2μ(E − V0)/� (11.52)

(see also Sect. 8.3.2).
(e) According to Sect. 11.3 the width of an elastic resonance is related to

the logarithmic derivative L0(E), i.e. follows from a Taylor expansion of
Re(L0(E)) after truncation after the second term

Γel = −2kR

(dL0(E)/dE)E=ER

. (11.53)
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Calculate

dL0(E)

dE
=
(

dL0

dκ

)(
κ

dE

)
. (11.54)

Show that κa = (2n+ 1)π/2 corresponds to “single-particle” s-wave res-
onances. What is the energy spacing of the sequence of s.p. resonances?
With the help of Eq. (11.53) deduce the single-particle width Γs.p. as func-
tion of the mass number A and the incident energy.
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Chapter 12
Intermediate Structures

Intermediate structures IS have in common that they possess fine structure, i.e. that
they appear as enhancements of many fine-structure states over a certain energy
region, the width of which is intermediate between that of the narrow fine-structure
states and that of much wider phenomena (coarse structure) such as the optical-
model shape resonances seen in averaged neutron elastic scattering cross sections.
The term IS covers a number of quite diverse phenomena:

• Heavy-ion molecules,
• Neutron shape resonances,
• Giant resonances,
• Fission doorways, and
• Isobaric analog resonances.

A very interesting feature is the interplay of these structures and phenomena such
as doorways or hallways and the mechanisms of spreading of the intermediate
strengths into the fine structure measured by the spreading width Γ ↓. The total
widths then have several components, i.e. besides the spreading width there are
escape widths Γ ↑ of decays into fine-structure states and the total width Γ that
determines the lifetime of a state is a sum of all. Early references to intermediate
structures are Refs. [FES67] and [CIN73].

12.1 Heavy-Ion Scattering and Molecular Resonances

In the 1960s excitation functions of the scattering of heavy ions from heavy ions
(e.g. 12C on 12C or 16O on 16O) showed regularities that were interpreted as short-
lived molecular states, very much like states of atoms forming molecules like H2.
These “resonances” in the excitation functions are “intermediate” because their
widths are larger than true compound resonances and they should have a fine struc-
ture of true compound states of e.g. 24Mg, i.e. the molecular states are doorway
states to the fine structure states, and their widths should consist of two parts: es-
cape width and spreading width. Fourier-type or autocorrelation analyses of the

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
DOI 10.1007/978-3-642-53986-2_12, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 12.1 Left: Intermediate-structure data in excitation functions of several heavy-ion reactions,
especially prominent in the reaction 16O(16O, 16O)16O. Right: CN fine structure assigned to states
in 32S superimposed on IS, probably molecular resonances in 16O(16O, 16O)16O. The different
angles are c.m. angles between which the data shows correlations. Adapted from Refs. [VAL81,
SIE67]

resonance structures found evidence for three types of distinctly different widths:
shape-elastic structures with typical widths Γs.e. < 1 MeV, intermediate structures
with widths Γint of 100–200 keV, partly overlapping i.e. with Γ/D ≥ 1 where
D = 1/ρ are the average level separation, ρ the level density, and compound
fine structure resonances with typical widths Γc.e. ≈ 30 keV. Very coarsely we
have order-of-magnitude lifetime scales for the three cases of 10−21,10−20, and
10−19 s. In the classical picture of a rotating molecule this corresponds—in a semi-
classical picture—to less than one complete revolution of the two nuclei forming the
molecule around one another during the projectile’s passage. Figure 12.1 shows a
summary of older data of different molecular systems. The formation of a molecule
depends on incident energy and mass of the ions and competes with complete or in-
complete fusion into compound nuclei that may also lead to the same exit channels.
Thus, additional criteria such as identification of rotational bands etc. are necessary.
In the past also different interpretations of the IS have been put forward.

The identification of resonance-like structures in excitation functions is not easy
and may be ambiguous in the presence of other, e.g. fine structure, especially
when these structures have widths not very different from each other. Therefore,
attempts have been undertaken to go into the complementary time regime and mea-
sure time differences from different processes directly. Direct processes have widths
corresponding to the passage times (τ ≈ 10−21 to 10−22 s). Similar intermediate
structures have been found for different reaction channels of these same entrance-
channel reactions, which is expected if the structures belong to definite quantum
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Fig. 12.2 Intermediate
structures in excitation
functions of neutron
scattering on 19F, exhibited
by experimental averaging
over fine structure with
different energy intervals �E.
From [MON67]

states and not to Ericson fluctuations of statistically overlapping compound states
or direct processes. Typical cases are the reactions leading to α exit channels, e.g.
16O(12C, αi)

24Mg.

12.2 Structures in Neutron Reactions

Besides the CN fine-structure resonances in neutron scattering and reactions inter-
mediate and gross structures have been identified.

12.2.1 Neutron-Nucleus IS

After appropriate averaging neutron scattering cross sections may show intermedi-
ate structures with widths (typically around 150 keV) between the gross structures
(MeV) and the CN fine-structures (eV–keV). An example is shown in Fig. 12.2.

12.2.2 Single-Particle Neutron Resonances

The fine-structure compound resonances (s-wave) found in neutron scattering at low
energies exhibit—when averaged over energy with a suitable averaging interval—
distributions of resonance strength (strength function) with resonance-like shapes,
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Fig. 12.3 Giant E1 electric
dipole resonance in
120Sn(γ, xn) with �L= 1,
and spin and isospin changes
�S = 0, and �T = 1. From
[HAR01]

but with widths of up to several MeV. Their positions on the energy scale coincide
with the energies where, as functions of the mass numbers of the compound nuclei,
the single-particle orbitals of the shell model become unbound, i,e, where they cross
E = 0. This identifies these structures as single-particle or: “shape”, formerly also
“giant” resonances. The single nucleon outside the core moves in the average po-
tential of all core nucleons and therefore does not see details of nuclear structure.
Also the energy and width dependence on A behave systematically.

12.3 Giant Resonances1

Giant Resonances are broad structures in excitation functions with large cross sec-
tions, excited by incident γ ’s as well as in inelastic particle reactions such as
(p,p′), (p, γ ), and (α,α′). They correspond to collective excitations of groups of
larger numbers of nucleons moving against each other. They can be classified ac-
cording to their electromagnetic modes (or multipolarities), their isospin, or their
motion types. These latter are

• The Breathing mode: The entire nucleus “breathes” without changing shape.
Electromagnetically this is an E0 mode, its isospin is 0. It is plausible that this
mode is related to the nuclear compressibility.

• The E1 mode: This is the classical dipole mode, in which proton and neutron
fluids move collectively against each other.

• The M1, T = 1 mode: This is the magnetic-dipole Scissors mode, in which the
motions of the proton and neutron fluids have a rotational component acting like
the arms of scissors.

• The E2 or quadrupole giant resonance where protons and neutrons oscillate col-
lectively against each other such that an oscillating quadrupole moment is formed.

• Higher order resonances such as M3, E4 etc. have been found, e.g. the isoscalar
octupole (3�ω) resonance.

1It should be noted that in the older literature the term “Giant Resonance” was also used for the
total cross section behavior of neutron scattering on many nuclei in an energy region where single
resonances are not resolved and which is described by the optical model, see e.g. Ref. [SAT90].
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Fig. 12.4 Giant resonances, e.g. monopole, quadrupole and octupole excitations, in inelastic α

scattering 120Sn(α,α′) with �L = 1,2,3 at Eα = 152 MeV. High background makes the disen-
tangling of different resonances difficult and may require model assumptions. Measurements are
best done at small forward angles. From [HAR01]

Fig. 12.5 Giant resonances classified according to their multipolarity �L, their spin and isospin
changes �S, and �T

• Relatively new developments concern the dipole (E1) Pygmy resonance in nu-
clei with high neutron excess where—it is assumed—the neutron skin oscillates
against the remaining N = Z (T = 0) core. Radioactive ion-beam facilities will
be able to investigate this phenomenon near the edges of stability in more detail.

An example for the “classical” electric E1 dipole resonance of the (γ, xn) reaction
on 120Sn is shown in Fig. 12.3. Besides γ interactions inelastic particle scatter-
ing, especially with α’s, is an important tool for measuring giant resonances. The
cross sections peak at very small forward angles and the measurements normally
require the use of magnetic spectrographs, see Sect. 17.3.3. Figure 12.4 shows an
example of such spectra together with the indication of the disentanglement of the
different contributions. The giant resonances that have been found can be classified
according to their changes of orbital angular momentum, of spin and of isospin.
Figure 12.5 shows schematically the different types. According to their collective
character the resonance energies and widths vary systematically and slowly with



212 12 Intermediate Structures

Fig. 12.6 GDR in the
photoneutron (γ,n) reaction
on isotopes of Nd with
increasing neutron number
N , showing onset of
deformation. Adapted from
[BER75]

the mass number A. The energies of the resonance peaks are higher than those
of “normal” excitations, and the cross sections of the exciting reactions are high.
This suggests the interpretation of the giant resonances as collective excitations of
many (all) nucleons and—microscopically—the collective and coherent excitation
of many-particle-many-hole (p-h) states across different harmonic-oscillator shells.
As an example a collective Jπ = 1− state may be constructed from excitation of
N = 5 such p-h states from the p shell into the sd shell

∣∣(1p3/2)
−1(1d5/2)

〉
1− . . .

∣∣(1p1/2)
−1(1d3/2)

〉
1− (12.1)

The p-h interaction acts as a perturbation that pushes one (the coherent state in
which all amplitudes add up) upwards in energy because of the repulsive nature of
the interaction and gives it nearly all strength of the N interfering states. The other
N−1 states interfere destructively and, therefore, are only slightly shifted in energy.
(This is in analogy to the pairing phenomenon where the pairing-force is attractive
and lowers the coherent (“paired”) state. In both cases this is a characteristic behav-
ior of the solution of the Schrödinger equation upon diagonalization of the perturbed
Hamiltonian). In deformed nuclei the GDR peak is split into two peaks indicating
different oscillation frequencies for dipole oscillations along the two principal ellip-
soidal axes. This is illustrated in Fig. 12.6 where successively neutrons are added
to a spherical core until deformation sets in. The number of possibilities of excit-
ing giant resonances (excited between different harmonic-oscillator shells: N ×�ω,
N = 0,1, . . . which determine the multipolarities EL, ML, L= 0,1,2, . . . , the pos-
sibility of spinflips �S = 0 or 1, and of isospinflips �T = 0 or 1) allow for many
different giant-resonance types. Many of them have been identified although they
are often difficult to disentangle due to similar energies and large widths. A compre-
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hensive survey of giant resonances up to 1999 is given by Ref. [HAR01]. Inelastic
scattering up to 1976 has been discussed in Ref. [BER75, BER76]. The more recent
M1 scissors-mode giant resonance is discussed in detail in Ref. [HEY10]. Some
properties of important giant resonances are collected in Table 12.1.

12.4 Fission Doorways

The phenomenon and mechanism induced nuclear fission as another form of nu-
clear reaction has already been discussed in Sect. 11.4.1. A compound system is
formed in the entrance channel by any of a number of different reactions (e.g. neu-
trons or charged particles). For heavy nuclei the compound nucleus may decay by α

emission or fission and in the latter case go through various stages of deformation
forming potential minima at different separations of the fissioning nucleon clusters.
In these minima systems of (rotational) levels may exist, which, due to different
barrier heights and thicknesses, may exhibit quite different widths and lifetimes as
well as level densities. In the fission channel these states will mix and show the be-
havior of intermediate-structure states with fine structure. A famous example is the
case of 240Pu+ n. The total (i.e. essentially the elastic (n,n)) cross section shows
many fine-structure resonances, whereas in the (n,f ) sub-barrier fission the cross
section mediated by the same compound system displays groups of these levels that
are widely separated and, if averaged, have shapes of resonances with larger widths
(shorter lifetimes). Besides, the detailed spectroscopy of the states in the different
minima tells about the complicated double- or triple fission barriers for which the
doorway mechanism is of interest. The double-humped barrier model was confirmed
by several evidences such as γ transitions between rotational levels in the first and
the second minimum with different moments-of-inertia corresponding to different
deformations. Also transitions between states in both minima have been observed.
[SPE72]. A general survey of the fission process can be found e.g. in Ref. [SPE74].

Figure 12.7 shows the total and isomeric fission cross sections in the same energy
region of neutrons.

12.5 Isobaric Analog Resonances (IAR)

Members of isobar multiplets are called isobaric analog states IAS. They are con-
nected by exchanging one neutron in an unfilled shell of a nucleus by a proton
(or vice versa), which corresponds to application of the isospin raising (or lower-
ing) operator to such a state. Above a certain mass number A these T > states are
raised sufficiently by the Coulomb interaction that they lie in the continuum, i.e.
they can be studied as resonances (the Isobaric Analog Resonances IAR), see also
Sect. 3.3.3 and Refs. [FOX66, TEM67, WIL69], and [AND69]. One point of inter-
est in these IAR is due to the fact that their hadronic properties (i.e. those not due
to the Coulomb interaction) are the same as those of the original T < states. These
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Fig. 12.7 Total (n,n) and
sub-barrier (n,f ) isomeric
fission cross sections in the
energy range from 0.5 to
3.0 keV [BNL11, MIG68]

can therefore be studied in excitation functions e.g. of proton scattering and com-
pared to the low-lying excitations of the T < states studied in transfer reactions such
as (d,p). This will be explained for the case of states of 208

82 Pb. Three neighboring
nuclei have to be considered, the target nucleus, to which either a proton is added to
form the compound system with the IAR, and the final nucleus of adding a neutron
to the target, e.g. via the (d,p) reaction, see Fig. 12.8.

The IAR in excitation functions e.g. of proton elastic and inelastic scattering
correspond to simple excitations, i.e. of single particle/single hole or particle-hole
states near magic-number nuclei. This explains their typical widths. The total width
of the IAR Γ consists of two parts, the spreading width of Γ ↓ taking into account
the decay of the IAR into the T < CN states by isospin mixing, and the escape
width Γ ↑ describing the proton emission into the exit channel. The IAR can be
described by the classical Breit-Wigner theory, except that—due to the spreading
over energy regions of varying CN-level density—the resonance shape becomes
asymmetric. Figure 12.9 is a good example showing the IAR in the compound
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Fig. 12.8 Energy levels of
the three different nuclei
connected by isospin
symmetry: the target nucleus
207
82 Pb (the core state <C〉
with isospin T0, to which a
proton or a neutron may be
added, the compound (or
“daughter”) nucleus 208

83 Bi,
and the “parent” nucleus
208
82 Pb. The IAR are the T >

daughter states embedded in a
“continuum” (in reality: a
quasi-continuum) of many
T < states with high level
densities, with which they
partly mix

nuclei 209
83 Bi and 208

83 Bi, the analogs to the low-energy shell model states in 209Pb
(single-particle states) and 208

82 Pb (particle-hole states with different amplitude con-
tributions (e.g. |2g9/2 ⊗ 3p−1

1/2〉5− of the s.p. ground- and excited states of 209
83 Bi

coupled to single-hole states of 207
82 Pb [LAT79, MEL85, NYG89]). The analogs are

shifted into the continuum by the Coulomb energy difference �EC ≈ 6
5

Ze2

R
minus

the neutron-proton mass difference δnp = 0.139 u. In heavy nuclei and the regions
of high level densities of the T < (parent) states only the intermediate structures of
the T > states are visible. The spectroscopic value of these studies is e.g. the spec-
troscopic factors (or decay amplitudes) to be compared to the spectroscopic factors
obtained from corresponding (analog) (d,p) reactions to the T < isobaric analogs
and the shell-model structures (shell-model state configurations), and the role of the
residual interaction. The reaction mechanism reveals information about the role of
isospin (breaking), see Sect. 3.3.3, the mixing of T > and T < states and the system-
atics of spreading widths Γ ↓ (which proved to be remarkably constant over a wide
mass-number range [HAR86, JAE87, NYG89]), and the systematics of Coulomb
energy differences, see e.g. [JAE69]. It turns out that isospin mixing in these heavy
nuclei is quite small which has been explained with shortness of interaction times.

Like in giant resonances we have a spreading of the strength into more com-
plicated (many particle/many hole) compound states that are longer-lived, see
also Sect. 3.3.3. In the excitation functions they manifest themselves as superim-
posed fine structure (doorway mechanism). This fine structure can be made vis-
ible, as long as the level densities are such that these CN states do not overlap
and when the experimental resolution is good enough. This limits the visibility to
medium-mass nuclei such as 40Ca up to A≈ 100. Much effort has been expended
to study these fine-structure states using accelerators with high energy-resolution
experiments, especially at the TUNL lab. (Duke U.) at Durham, NC, USA, see
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Fig. 12.9 Excitation functions of elastic and inelastic proton scattering on 207
82 Pb (left and center)

and 208
82 Pb (right) across a number of low-lying IAR in 208

83 Bi and 209
83 Bi. The background (dashed

lines) has been obtained in simultaneous resonance + optical model (elastic) or DWBA (inelastic)
fits to the data [LAT79, MEL85]

Fig. 12.10 Excitation
functions of 92Mo(p,p)92Mo
at Ep = 5.3 MeV at two
angles across a j = 1/2 IAR
with high resolution. The
heavy curves result from a
single-level resonance fit with
Γ = 27 keV and Γp = 7 keV
showing interference with the
smooth background. The fine
structure (thin continuous
lines, drawn through the data
points) has an average width
of ≈ 3 keV. The fine structure
disappears outside the IAR.
Adapted from [RIC64]

e.g. Refs. [WAT81a, WAT81b, MIT85] and references therein. The statistical dis-
tributions of these levels, their strength functions and widths etc. have been studied.
Figure 12.10 shows one result of proton scattering on 92Mo [RIC64].

12.6 Exercises

12.1. The Isobaric Analog Resonances in (p,p) scattering correspond to ground
and excited states of the parent nuclei (accessible e.g. by neutron transfer
reactions such as the (d,p) reaction, see Chap. 10), but shifted into the con-
tinuum. Parent (T <) and daughter (T >) states are assumed to have the same
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nuclear structure, except for possible isospin breaking. Calculate these energy
shifts for the pairs of nuclei 209

82 Pb–209
83 Bi, 139

56 Ba–139
57 La, and 91

40Zr–91
41Nb.

12.2. Mirror nuclei are pairs of neighboring nuclei with equal mass number A and
isospin T = 1/2, T3 = ±1/2 (e.g. 3He and 3H). Under isospin conserva-
tion they would have identical nuclear wave functions. The isospin-breaking
Coulomb interaction (corresponding to an exchange of one neutron with one
proton/application of isospin ladder operations) shifts the states of the T >

nucleus upward in energy against the T < nucleus (see the preceding text).
If—as a function of A—the energy shift exceeds the proton separation energy
the T > nucleus becomes unbound, i.e. its ground state becomes a resonance
in the continuum (the state acquires a width >0 and decays by particle emis-
sion). Near this region of medium-heavy nuclei the CN level densities are so
low that the CN fine-structure states can be resolved and investigated. Esti-
mate near which mass number A this transition occurs.

12.3. Nuclear matter and nuclei are weakly compressible. They share this prop-
erty with macroscopic liquids, which is one evidence for a description of
nuclei as liquid drops. The amount of compressibility is measured by the
compressibility K . (In classical physics the compressibility is defined as κ =
−dV/V · 1/dp describing the relative volume change per pressure change).
The compressibility enables high-frequency collective oscillations, the giant
monopole resonance (or breathing mode) of nuclei. An early model [BOH75]
predicted a relation between the compressibility K and the frequency of the
monopole excitation

ω= π

R

√
bcompr

mN

(12.2)

with bcompr = 1
9K,R the nuclear radius, and mN the nucleon mass. Using

Table 12.1 deduce the value of K and compare with the accepted value of
about 231 MeV.
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Chapter 13
Heavy-Ion (HI) Reactions

HI reactions are characterized by the fact that because of the higher masses of the
particles—as compared to light ions—and therefore smaller de Broglie wavelengths
often the phenomena can be described classically or semi-classically. Analog to light
optics have been discussed. For further reading the references [BRO85, BOC81,
BAS80, NOE76] are recommended.

13.1 General Characteristics of HI Interactions

In contrast to reactions between protons and nuclei interactions between heavier nu-
clei are characterized by strong absorption, i.e. reactions take place predominantly
at or near the nuclear surfaces. In this sense, because the α particle as projectile
shows already strong absorption, reactions of nuclei with A ≥ 4 with other nuclei
are considered as HI reactions. The theoretical description of HI reactions is difficult
in many respects. On the other hand, HI reactions have many useful applications in
nuclear physics. Their characteristics are

• The number of reaction channels is often very large.
• The number of nucleons involved is large making the systems multi-body systems

that are difficult to approach with microscopic theories such as based on the NN
interaction and using Faddeev and EFT methods.

• The description is therefore mostly limited to approximate reaction models.
• The many final channels make HI reactions a versatile tool for reaching many

different final nuclei and their excited states for nuclear spectroscopy by fusion-
evaporation reactions.

• The large atomic number Z and the strong electric fields of HIs have been widely
used to excite target nuclei during elastic scattering at close distance: Coulomb
Excitation.

• An important field for application of HI reactions is extending the periodic ta-
ble as far as possible (at present to Z = 118) by fusion of very heavy nuclei, in
competition with fast fission.

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
DOI 10.1007/978-3-642-53986-2_13, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 13.1 The typical
potential between two
medium-mass heavy ions
combined from a nuclear,
mostly attractive, potential
with the repulsive Coulomb
and centrifugal potentials
(schematically). A shallow
nuclear potential is assumed.
It is remarkable that at certain
energies a shallow trough
develops that, in principle,
can support some
(metastable) states of
rotational character,
suggestive of molecular
resonances, see below,
Sect. 13.2.3

It is useful to sketch the interaction potential between two heavy ions. It consists of
three parts

• At low energies, i.e. also at larger distance (large impact parameter, forward
scattering) elastic scattering by a strong Coulomb potential dominates. Sub-
Coulomb scattering is an important means of excitation of nuclei for spectroscopy
(Coulomb excitation) [ALD66, ALD75]. The scattering is described by the opti-
cal model, the central part of which is often a quite shallow potential (as compared
to nucleon-nucleus potentials).

• At higher energies the centrifugal potential V� ∝ �
2�2/2μr2 can reach very high

values thus creating a centrifugal barrier that (classically) not only prevents the
nuclei from fusing, but may cause rotational fission.

• At intermediate energies (and small impact parameters, backward scattering)
above the Coulomb barrier EC fusion into compound systems is possible. Subse-
quent evaporation of the highly-excited compound nuclei is a preferred method
for the study of properties of final nuclei, with the interest shifting especially to
exotic nuclei. Here the nuclear (hadronic) interaction is important once the nuclei
overlap sufficiently.

These three components create a rather complex picture of the combined potential
that is schematically depicted in Fig. 13.1. Apart from the hadronic part of the in-
teraction, the elastic scattering between heavy ions lends itself to approximate and
semi-classical phenomena and descriptions, especially because a truly microscopic
theory of the interactions of systems of many nucleons is still lacking.
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Fig. 13.2 (Semi-)classical
description of different
possible paths of the
projectile depending on the
impact parameter b (i.e. on
energy and angle) of the
scattering process:
(a) Rutherford scattering,
(b) Coulomb scattering due to
the influence of the extended
charge (and mass)
distributions and grazing
orbits, (c) complete fusion
and CN formation,
(d) orbiting, and
(e) incomplete fusion and
inelastic scattering

13.2 Semi-Classical Phenomena and Description

The relatively small de Broglie wavelength of the heavy ions in reactions is a con-
dition that the projectile and target nuclei are localized and have well-defined tra-
jectories. Especially as long as the nuclei do not merge a number of semi-classical
phenomena, partly with interference between different paths have been identified.
Figure 13.2 depicts a number of possible trajectories of heavy ions when passing a
(heavy) target nucleus. The different modes can be understood with the deflection
function, extended from the point-nucleus case, Eq. (2.5). For an arbitrary potential
including the orbital-angular momentum barrier

Veff = V (r)+ L2

2μr2
(13.1)

the integration of the differential equation of the classical trajectory

dΘ = −L

μr2

[
2

μ

(
E − V (r)− L2

2μr2

)]−1/2

(13.2)

from r =∞ to rmin ≡ d yields

Θ = π − 2b
√

E∞
∫ ∞

rmin

dr

r2
√

E − Veff(r)
. (13.3)

The integrand is always >0 and∞≤Θ ≤ π . With the scattering angle θ we have
Θ = θ + 2nπ . Assuming a model potential that is partly repulsive (Coulomb) and
partly attractive, as shown in Fig. 13.1,

V (r)= c

r
− β

r2
; c,β > 0, (13.4)

we obtain deflection functions as in Fig. 13.3. With Eq. (2.5) the classical cross
section results.
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Fig. 13.3 The deflection
functions Θ(b) for a pure
point-Coulomb potential and
for more complicated
potentials with attractive parts
such as the nuclear (hadronic)
force and repulsive parts such
as the point or
extended-charge Coulomb
potential show how effects
such as “Orbiting” and
“Rainbows” are possible

Fig. 13.4 The cross section
relative to the
point-Rutherford cross
sections shows a typical
Fresnel diffraction pattern
before the strong fall-off for
larger angles that is caused by
the nuclear potential
including strong absorption
near the grazing angle θgr .
Also shown (schematically) is
the rainbow enhancement at
the rainbow angle θr where
classically the cross section
would diverge. Adapted from
[FRA72]

13.2.1 Elastic Scattering

For elastic scattering of heavier ions the cross sections behave very much like Fres-
nel diffraction in optics with an illuminated region and sharp shadow (classical tra-
jectory picture, analogous to geometrical optics), superimposed by interference pat-
tern due to diffraction at the (nuclear) “edge” that can be described by Airy func-
tions. Figure 13.4 gives an example of such a semi-classical description. For lighter
HI elastic scattering at higher energies where the Coulomb interaction becomes
small the differential cross section assumes the form

dσ

dΩ
=R2

[
J1(kRθ)

θ

]2

(13.5)

(with J1 a Bessel function) of Fraunhofer scattering in light optics [NOE76], p. 122.
Other analogies (“glory scattering”) have been constructed. A detailed discussion
of the semi-classical description of heavy-ion reactions can be found in [FRA72,
SAT90, NOE76].
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13.2.2 Other HI Reaction Models

Like with light ions heavy ions can be classified according to reactions times with
the limiting cases of direct and complete-fusion compound-nucleus reactions. The
model descriptions are similar with modifications by

• the high number of possible outgoing channels,
• the high excitation energy, and
• the high angular momentum possible.

Consequently the description e.g. by coupled-channels codes CCWBA instead of
DWBA is often necessary. The complete thermodynamical equilibrium for true
compound systems is often not obtained leading to effects such as pre-equilibrium
or incomplete fusion. The relevant reaction mechanism is deep-inelastic scatter-
ing. In outgoing-particle spectra fragment masses smaller than the CN masses are
found. Molecular resonances are also a consequence of systems with high angu-
lar momentum preventing complete fusion. On the other hand, the large numbers
of outgoing channels, the high excitation energies and angular momenta make HI
fusion-evaporation reactions an almost ideal tool for nuclear spectroscopy, espe-
cially of high-spin states.

13.2.3 Molecular Resonances

The interaction potential between two heavy ions is a combination of a strong repul-
sive Coulomb potential, a significant (repulsive) centrifugal potential, and—at suffi-
ciently high energies—an attractive contribution from fusion (absorption) channels.
Depending on energy and mass-number combinations this contribution allows either
fusion into CN systems, incomplete fusion or the total potential can assume a shape
with a shallow minimum at a finite separation distance > 0 in which highly excited
states can exist that may be identified with short-lived molecular states (in analogy
with atomic molecules). In a number of cases structures in excitation functions of
“intermediate” width have been measured. For more details see Sect. 12.1.

13.2.4 Heavy-Ion Reactions and Superheavies SH

The extension of the periodic table in the direction of an assumed island of stability
beyond Z = 114 requires beams and targets with high Z and N . Theoretical model
calculations predict SH’s Magic numbers Z = 114, 120, or 126, and N = 184. Thus,
this new-element synthesis is a genuine field of heavy-ion physics. The production
of elements up to Z = 118 so far teaches how to proceed further. The principles
are to try paths where neither fission nor α decay are faster than the (short) life-
times of the expected compound nuclei. Their lifetimes must be long enough to



226 13 Heavy-Ion (HI) Reactions

emit radiation characteristic enough to identify the new nuclides. Such were in the
past α decays leading to chains with already known isotopes. For more details see
Sect. 15.3.

13.3 Nuclear Spectroscopy and Nuclear Reactions

Nuclear spectroscopy, which investigates the properties of ground and excited nu-
clear states, has to rely in many ways on nuclear reactions and the techniques nec-
essary (ion sources, accelerators etc.). A few examples will be discussed here:

• γ transitions in nuclei may be investigated e.g. after Coulomb excitation. In this
case the rapidly varying electric field of an accelerated heavy ion excites the target
nucleus during passage.

• In HI fusion-evaporation reactions the choice of the reaction partners and of the
incident particle energies determines the range of angular momenta and of exci-
tation energies of certain final nuclei to be investigated.

• Excitation functions of elastic and inelastic proton scattering via isobaric-analog
resonances allow the detailed spectroscopy, e.g. of shell-model states, comple-
menting the direct reactions to the low-lying final-nucleus states.

• Transfer reactions like (d,p) stripping historically served for finding and lo-
calizing of (especially single-particle) shell-model states for confirmation of the
(single-particle) shell model. Most often the single-particle strength is fraction-
ated by the residual interaction, i.e. the action of the other non-shell-model (or:
core) nucleons. In that case a number of states is grouped around a center-of-mass
(in energy), which corresponds to the shell-model state, and which has approxi-
mate Lorentz form with a width Γ connected to the strength of the residual in-
teraction (strength function). From the point of view of reaction mechanism this
behavior is also a doorway intermediate state with fine structure, see Chap. 12.

13.4 Heavy-Ion Reactions as Special Tools for Nuclear
Spectroscopy

13.4.1 Coulomb Excitation

The high atomic numbers Z available with heavy-ion projectiles can be used for
efficient excitation of many states of target nuclei by the strong Coulomb field during
close-by passage, see e.g. Refs. [ALD66, ALD75]. Below the Coulomb barrier only
the electromagnetic interaction acts between the nuclei. Thus, an exact description
of the sub-Coulomb excitation process is possible, and, in semi-classical first-order
perturbation theory the trajectories are described classically and the cross section as
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the Rutherford cross section times the electromagnetic excitation probability Pi→f

(
dσ

dΩ

)
= Pi→f

(
dσ

dΩ

)
Ruth

(13.6)

P is the square of the matrix element of the electromagnetic transition, expanded in
multipole moments.

13.4.2 Fusion-Evaporation Reactions

The goal of nuclear spectroscopy is to elucidate as many properties of all nuclei of
the nuclide chart as possible. This includes the comparison with nuclear-structure
models such as the shell or collective models or their modern versions, but also
the necessity of clearing all steps of the different processes of nucleosynthesis in
astrophysics. It also includes detection or production of unknown nuclides at the
edges of the nuclide chart. The necessity to reach these limits by fusion reactions
requires many different projectile-target combinations. These fused nuclei being far
from the valley of stability are unstable against decay and in general highly excited
in states of high spin. The property of high mass number transfers high angular
momentum, which helps in reaching these states. Figure 13.5 shows the relation
between excitation energy and angular momentum (“Spin”) of excited nuclei (in
principle an additional variable, the level density ρ(Ex, J ) may be depicted in a 3D
plot). The Yrast Line is defined as the maximum angular momentum possible with a
given excitation energy (or vice versa: as the minimum excitation energy at a given
angular momentum). The level density drops to zero at this line, i.e. to the right
there are no levels.

At very high excitation above the particle-separation energies the states decay
by particle emission, i.e. through fastest process, the strong interaction. Below the
nucleon separation energy the states decay electromagnetically or by β decay. In
regions of high level densities these decays occur statistically (Evaporation). How-
ever, at the edges of the yrast diagram with the maximum of angular momentum (or
spin) compatible with the energy of the compound system the level density is low
and well-separated γ transitions from very high-spin states are possible. Thus e.g.
rotational bands have been observed up to spins of 80�. Phenomena such as Back-
bending, caused by a phase transition with change of deformation and moment-of-
inertia, and Superdeformation of nuclei (with axis ratios of the rotation ellipsoid,
assumed as nuclear shape, of 1 : 2; normal deformations in mass regions between
closed shells and at lower excitation energies are much smaller) are observable in γ

cascades along or near the yrast line where—due to the low level densities—single
states and transitions are visible, in contrast to the statistical decays at lower angular
momenta and high excitation.
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Fig. 13.5 Scheme of the
possible processes after
excitation by fusion reactions,
and especially definition of
the Yrast Line as the limit
where the total excitation
energy is rotational and
beyond which the level
density becomes zero

13.5 Exercises

13.1 Calculate the Coulomb energies and the Sommerfeld parameter at the
Coulomb energies for the 12C + 24Mg, 127I + 127I, and 208Pb + 208Pb sys-
tems.

13.2 Heavy-ion reactions can often be described semi-classically. With the criteria
developed in Chap. 2 test this e.g. for Ar on Th at 50 MeV above the Coulomb
barrier.

13.3 Assume that transfer reactions are peripheral, i.e. take place preferentially
at the surface of heavy ions. In a semi-classical description trajectories are
well-defined by energy and angle. Where would you search for evidence of
a transfer-reaction mechanism? Take as an example for a one-proton transfer
the reaction 16

8 O(103
45 Rh, 17

9 F)102
44 Ru at Ec.m. = 135 MeV. At which c.m. and

lab. angles would you expect maximum transfer cross section?
13.4 Consider elastic Coulomb scattering of 16O from gold at Ed = 10 MeV/nucle-

on. At which c.m. angle and which critical angular momentum �crit does dσ
dΩ

start to deviate from point-Rutherford scattering, leading to a marked falloff
to higher scattering angles?

13.5 Derive the classical cross section

dσ

dΩ
∝ 1

sin θ
(13.7)

for compound-nucleus reactions with very high angular momentum (such as
with heavy ions), leading not only to symmetry about 90◦, but to a very marked
anisotropy. An example is the angular distribution of the fission fragments of
the compound nucleus 209At formed in the reaction 12C+ 197Au.
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Chapter 14
Nuclear Astrophysics

Because of recent developments in cosmology and particle physics (“astroparticle
physics”) as well as of improved methods in nuclear astrophysics the latter field has
gained increased importance. In “Big-Bang” as well as later phases of nucleosynthe-
sis the interplay between nuclear reactions and nuclear spectroscopy is strong and
requires the entire apparatus and methods of nuclear physics. However, the energies
required are quite low, and the description of the reaction mechanisms are simplified
by the fact that often only S-waves participate. All reaction models discussed here
are applicable to low-energy nuclear astrophysics. On the other hand the Coulomb
barrier makes the cross sections often very small and extreme background reduction
is required together with beam currents as high as possible. Accelerator facilities
have therefore been placed in deep-underground laboratories. The main goal is to
determine absolute cross sections and from these reaction rates of very many nuclear
reactions occurring in stars and in star formation, which are partly coupled and form
a complicated network of coupled rate equations. Polarization observables play a
minor role here. An excellent introduction into the field of nuclear astrophysics is
Ref. [ROL88].

14.1 Reaction Rates

Because of the lifetime of the neutrons that must be produced in the chain of reac-
tions neutron-induced reactions play a major role only in rapid processes such as
th r-process in later stages of element formation, and charged particle-induced re-
actions are the most important in earlier phases of nucleosynthesis. The Coulomb
barrier

VC(r)= Z1Z2e
2

r
(14.1)

determines the coarse behavior of the cross section whereas finer details are due
to the specific reaction mechanism. The height of the Coulomb barrier even for
the lightest system p + p is about 500 keV (meaning that classically one proton
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would need T ≈ 1 MeV in the lab. to reach the range of the nuclear interaction Rn)
but tunneling makes reactions possible much below that threshold. The effect of
tunneling is described by the tunneling probability

P = |ψ(Rn)|2
|ψ(RC)|2 , (14.2)

where the squares of the wave function are the probabilities of finding the particles
at r = Rn and r = RC , resp. The exact solution of the Coulomb problem [BET37]
can be approximated sufficiently by

P = exp (−2πηS) (14.3)

with ηS the Sommerfeld parameter, see Eq. (2.2). Two energy-dependent factors
determine the gross behavior of the cross sections

σ(E)∝ exp(−2πηS) and ∝ π

k2
in

∝ 1

E
. (14.4)

Combining them the cross section may be factorized

σ(E)= S(E)

E · exp (2πηS)
(14.5)

where S(E) contains all information on the nuclear interaction. It is called the as-
trophysical S-factor. It is the most useful parametrization of the cross section and
shows very directly the type of reaction occurring. Smooth behavior indicates direct
processes, irregularities are due to resonances of the compound systems or thresh-
old cusps, or some additional effects such as electron screening of the Coulomb
field. Especially the smooth behavior of an S-factor allows the extrapolation of a
cross section into energy regions not accessible experimentally, e.g. to very low en-
ergies. Figure 14.1 shows the integrated cross sections of the fusion reactions most
important for primordial nucleosynthesis and for fusion energy research.

14.2 Typical S-Factor Behavior

If we take fusion reactions—which are important also for fusion-energy research—
as examples, we can find the two extreme cases of the DD reactions

2H+ 2H→
{

3H+ p
3He+ n

(14.6)

as direct rearrangement reactions and the

2H+ 3H→ 4He+ n (14.7)
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Fig. 14.1 Cross sections of a
few fusion reactions relevant
to primordial element
synthesis and controlled
fusion for energy production.
Data from [NNDC]

and the
2H+ 3He→ 4He+ p (14.8)

reactions as occurring via single resonances corresponding to excited states in 5He
and 5Li, sitting on some direct-reaction background. Figure 14.2 shows the two
cases schematically.

Electron Screening At the very low end of the energy scale the effects of screen-
ing of the Coulomb potential by the presence of electrons (either in the plasma of
gaseous reaction partners or in the metallic environment of solid target materials)
may modify (increase) the fusion cross sections appreciably, see e.g. [ROL95]. The
present status of experiments and theory is e.g. given in Ref. [HUK08].

In the Figs. 14.3 and 14.4 [NAV11b] the effect of electronic screening is clearly
visible for 3He(d,p)4He, not so evident for 3H(d,n)4He. The purely nuclear calcu-
lations [NAV11a, PIE01, EPE09] of course do not describe this part of the S-factor
and a consistent theory of the screening is still missing. Precise extrapolations of the
nuclear S-factor together with precise measurements of the cross sections, which
are difficult due to the low energies, could help to pin down the screening details,
maybe also including possible polarization effects on the screening. The figures
show also the partly unsatisfactory quality of the experimental data. A very recent
development is the use of high-power lasers to produce a plasma of ionized reaction
partners in which no electron screening is acting and which allows the extrapolation
of the purely nuclear cross sections [BAR13].
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Fig. 14.2 S-factors of the direct DD reactions (upper) and the resonant fusion reactions D + 3H
and D + 3He (lower). The nearly energy-independent parts of S indicate pure s-wave non-reso-
nant behavior, the non-resonant increase of S towards higher energies is caused by the emergent
admixtures of higher (P , D) waves. Note the logarithmic scales

Fig. 14.3 Data situation of
the 3H(d,n)4He reaction and
“ab initio” many-body
calculations with the
NCSM/RGM method. The
figure shows all available
data, the lines show the
convergence of different
approximations. For details
see Ref. [NAV11b]

14.2.1 Calculation of Reaction Rates in Plasmas

One of the important quantities in nuclear astrophysics as well as fusion-energy
questions is the rate R of reactions between at least two collision partners a and b.
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Fig. 14.4 Data situation of the 3He(d,p)4He reaction (left) and “ab initio” many-body calcula-
tions with the NCSM/RGM method (right). The right figure shows all available data, the lines
show the convergence of different approximations. For details see Ref. [NAV11b]. The left figure
displays the data of Refs. [KRA87] (triangles, data with no electron screening), [GEI99] (squares),
[ALI01] (diamonds), and [LAC05] (crosses) and includes a recent S-factor determination using a
petawatt laser beam for plasma interactions of the ionized reaction partners [BAR13] (solid dots
and dashed line, no electron screening)

Different from nuclear reactions in the laboratory with one particle at rest, the other
with fixed incident energy from an accelerator, in astrophysics we have a gas or
plasma of at least two species of nuclei (atoms) with a relative velocity v be-
tween them. In the classical picture (see above) the total cross section is defined
as the effective area A, in which collisions occur. With both partners moving this is
equivalent to one partner a moving, the other b at rest, but with increased collision
cross section σ(v) times the number of target nuclei b, say Nb , per unit volume
A = σ(v)Nb . All projectile nuclei a see this area and the total rate is proportional
to the incident flux j =Nav, thus

R =NaNbvσ(v) (14.9)

where the unit of R usually is cm−3 s−1. The velocities follow distributions N(v),
which are determined by the temperature T and range from 0 to ∞ such that the
average product 〈σ · v〉, the reaction parameter must be

∝
∫ ∞

0
N(v)vσ(v)dv (14.10)

and

R =NaNb〈σv〉. (14.11)

In stars normally the gas is in thermodynamic equilibrium and the atoms (nuclei)
follow the Maxwell-Boltzmann velocity distribution

N(v)= 4πv2
(

m

2πkT

)3/2

exp

(
−mv2

2kT

)
, (14.12)
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Fig. 14.5 Typical
Maxwell-Boltzmann energy
distribution N(E) as function
of the (thermal) energy of
nuclei in a gas at equilibrium.
The energy is measured in
units of kT

see Fig. 14.5, which in terms of the energy is

N(E)∝E exp

(
− E

kT

)
. (14.13)

After kinematical transformation of vi of both particles to c.m. and relative veloci-
ties v and with μ the reduced particle mass one obtains

〈σv〉 = 4π

(
μ

2πkT

)3/2

v3σ(v) exp

(
−μv2

2kT

)
dv (14.14)

or

〈σv〉 =
(

8

πμ

)1/2

(kT )−3/2
∫ ∞

0
σ(E)E exp

(
− E

kT

)
dE. (14.15)

Figure 14.6 shows the reaction parameters of a number of fusion reactions calculated
by taking the average of the cross sections weighted over the Maxwell-Boltzmann
velocity distributions as functions of temperature, measured in keV.

In the primordial phase of fusion reactions shortly after the big bang (Big-
Bang nucleosynthesis) two chains of reactions are responsible for element syn-
thesis: one is the pp (and pep) chain, see Fig. 14.7, the other the CNO (also
“Bethe-Weizsäcker”) cycle, see Fig. 14.8. Both are strongly temperature dependent
(≈∝ T 15 for CNO and ∝ T 5 for pp). At the temperature of 16 · 106 K in the center
of the sun (and similarly in all lower-mass, sun-like stars) the energy production of
the pp chain dominates. The net reaction is

4p→ 4He+ 2e+ + 2νe + γ, (14.16)

and each fusion process liberates an energy of 26.4 MeV.
In stars with masses of � 1.5 M" the CNO cycle is more important. In the

latter—under participation of heavier nuclei such as 12C, 14N, and 16O acting as
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Fig. 14.6 Reaction
parameters of important
fusion reactions [RAE81]

Fig. 14.7 pp chain of
coupled reactions
synthesizing 4He from
hydrogen. This chain is
responsible for most of the
energy production in the
center of the sun and also for
the emission of solar
neutrinos

catalysts—also hydrogen is burned to 4He at temperatures between about 1.5 and
3.0 · 1015 K. In the lifecycle of such a star, once the hydrogen is used up, it collapses
by gravitational attraction with a temperature increase to ≈ 1 · 108 K. This allows
He burning, i.e. the fusion of two α’s to the short-lived (1 · 10−16 s) 8Be. Due to
the high density in the star a certain equilibrium abundance of 8Be enables α-8Be
and three-α collisions. Only via a 0+ resonant state, the 2nd excited state in 12C, the
famous Hoyle state [HOY54], at an excitation energy of 7.6542 MeV and a width
of only 8.5 eV is the formation of the most important element for organic life in the
universe possible. The actual energy of this state seems to be extremely crucial for
the formation of 4He and 16O by helium burning and all the following reactions.

Only recently ab initio calculations of the structure of the Hoyle state have been
possible in the framework of chiral effective-field theory and Monte-Carlo lattice
calculations [EPE11].

All other elements up to iron are formed by processes like (p,α), radiative-
capture (p,γ ), (α,n), β decay, carbon burning, (γ,α), and finally oxygen burning.

All elements beyond iron cannot be formed by fusion but need neutron-capture
reactions and β decays in two different main processes, the s (“slow”) process (with
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Fig. 14.8 CNO (bi-)cycle of
coupled reactions
synthesizing 4He from four
hydrogen nuclei

the neutron capture being slower than the β decay rates) and the r (“rapid”) process
(with fast-forming neutron-rich nuclei, typically in supernovae explosions).

Thus, nuclear astrophysics is a very rich field for the study of nuclear reactions
and their mechanisms which encompass all reaction types from direct to resonant,
capture reactions, charged and neutral reaction partners, heavy ions etc. It is clear
that for the evaluation of such sets of coupled nuclear reactions and decays the very
precise knowledge of reaction rates and cross sections is of prime importance as
well as of the precise dependence on energy (temperature). Any change in cross
section values and error bars requires a complete recalculation of the entire system
of rate equations. Typically there are hundreds of such coupled reactions. World-
wide networks are maintained to readjust the rates with each new set of data. An
example of such a network is NACRE, now updated to NACRE-II, maintained at
the Université Libre de Bruxelles, Belgium, for all charged-particle thermonuclear
reactions with nuclei A < 16, see [NAC13].

It should be noted that “primordial” (or “Big Bang”) nucleosynthesis is one of
three evidences for the Big-Bang model, together with the expansion of the universe
and the cosmic microwave background. Abundances of 4He, 2H, 3He, and 7Li are
important for the determination of the baryonic density of the universe. All reac-
tions involving these nuclei should be measured with high precision, but they still
contain some discrepancies as to Li. For a good recent survey of the status cf. e.g.
Ref. [COC12]. In addition, many reactions have never been measured or the data
have large systematic or statistical errors such that computer codes have to be used
to produce reaction-rate data.
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14.3 Exercises

14.1. Verify (using the Bethe-Weizsäcker mass formula, see e.e. textbooks on nu-
clear structure) that energy production in stars (or in the big bang) can only
occur by nuclear fusion reactions up to medium-heavy nuclei (about to which
element?).

14.2. For charged-particle reactions at astrophysical energies the Coulomb bar-
rier determines the reaction cross sections/reaction rates. Only through the
quantum-mechanical tunneling are there any reactions at all. Their proba-
bility is P = |ψ(Rn)|2/|ψ(RC)|2 with RC the classical turning point at the
Coulomb barrier and Rn the nuclear radius. Solving the Schrödinger equation
yields

P = exp

{
−2κRC

[
arctan(RC/Rn − 1)1/2

(RC/Rn − 1)1/2
− Rn

RC

]}
(14.17)

with κ =
√

2μ

�2 (EC −E).
Calculate (for s waves only) P for the p+p reaction as function of the c.m.

energy in the range from 1 keV to 550 keV (check that this is the Coulomb
barrier height). To which stellar temperatures do these two energies corre-
spond? Discuss, why—despite P being very small at stellar temperatures—
the resulting reaction rates account for stellar energy (and element) produc-
tion.

14.3. The reaction rate per particle 〈σ · v〉 must be an integral over velocities with
the Maxwell-Boltzmann velocity distribution as weight. If, as is often the
case, the S-factor is ≈ constant over E, we have

〈σ · v〉 =
(

8

πμ

)1/2 1

(kT )3/2
S(E0)

∫ ∞
0

exp

(
− E

kT
− b

E1/2

)
dE (14.18)

where the second term in parentheses describes the barrier penetrability with
b=√2μπe2 Z1Z2

�2 .

(a) Show that the integrand in 〈σ · v〉 as a function of E has the form of a
narrow peak, the Gamow peak.

(b) Evaluate this function for the p+ p and α + 12C reactions near T6 = 15.
(c) Calculate the energy of the Gamow-peak maximum and the (total) peak

width �.
(d) What is the (approximate) form of the integral? (Use a gaussian approxi-

mation)

exp

(
− E

kT
− b

E1/2

)
≈∝ exp

[
−
(

E −E0

�/2

)2]
. (14.19)

Discuss the strong temperature dependences for the two reactions.
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Chapter 15
Spectroscopy at the Driplines, Exotic Nuclei,
and Radioactive Ion Beams (RIB)

Nuclear reactions have been a most important tool of nuclear spectroscopy. The pos-
sibility to change energies of ions easily and the use of a wide variety of beams and
targets have especially made (tandem) Van-de-Graaff accelerators with their suitable
energy range almost universal workhorses for this field of study. Sophisticated tar-
get manufacturing techniques as well as ion-source techniques have been developed
for many nuclides, even for rare, but stable isotopes. However, with stable nuclear
collision partners only a fraction of final nuclear systems and states can be reached.
More than 3800 nuclides heave been experimentally observed, with 193 new entries
in the list (see e.g. [KNC12]). In order to study properties of as many nuclei as pos-
sible, radioactive projectiles have to be accelerated and applied in nuclear reactions.
Ref. [GEE06] gives a detailed overview of the motivations for RIB facilities.

15.1 Use of RIB

15.1.1 Nuclear Radii and Neutron vs. Proton Distributions

The almost universal A1/3 law of nuclear radii (for non-exotic nuclei) is broken
for nuclei near the two driplines, e.g. for halo nuclei such as 11Li, see Sect. 2.4.2.
Hadronic probes in comparison to electromagnetic ones reveal a neutron skin with
a slightly larger radius than that of the protons for nuclei with large neutron excess
(high isospin), see also Sect. 2.4.2. This behavior is expected for many nuclei near
the driplines. The earliest such measurement on the isotopes of Na found evidence
for a neutron skin increasing in thickness with increasing neutron number [SUZ95].
In the meantime especially nuclei with large neutron excess such as 208Pb and 48Ca
that are relatively well understood in terms of the shell model have been investigated
systematically as to consistency of the results obtained with different methods and
projectiles.
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15.1.2 Nuclear Models for Exotic Nuclei

One goal is e.g. to find the changes of the nuclear shell-model parameters and of
the position and strength of the shell-model energy gaps in the Z–N plane up to
the extremes of the proton or neutron driplines, see e.g. [KRU11]. Also changes in
parameters of mass formulae, especially of the symmetry energy and in the nuclear
equation of state must be investigated. Studies of reactions with exotic nuclei may
elucidate the somewhat unclear role of three-body forces (see also Sect. 9.2.5) in
the nuclear equation of state and thus for astrophysical questions (e.g. the radii of
neutron stars).

15.1.3 Giant Resonances of Exotic Nuclei

Collective modes of excitation of nuclei near the valley of stability (rotations, vi-
brations, mixed modes, and giant resonances) have been studied for a long time.
One mode is the GDR (Giant Dipole Resonance) (see Sect. 12.3), in which the pro-
tons and the neutrons of a nucleus oscillate against each other and produce large
and wide resonances in capture-γ reactions and their inverses as well as in charged-
particle reactions, visible at extreme forward angles. The properties of these excita-
tions change with varying neutron excess and are being studied systematically.

15.2 Production of Radioactive-Ion Beams

Two main principles of producing and accelerating radioactive beams have been
developed. Figure 15.1 gives a schematic view of the main setups for producing
and accelerating radioactive ion beams, ISOL (Isotope Separator On-Line) and IFF
(In-Flight Fragmentation), each with the option of post-acceleration. A rather large
number of such facilities has been implemented in recent years and new ones are
being built worldwide.

15.2.1 The ISOL Principle

In this scheme radioactive nuclei are created in nuclear reactions in thick targets
at high temperatures such that the residual nuclei diffuse out of the target into an
ionization chamber. Several ionization methods may be applied and the ions are
collected and formed into a (radioactive) beam that is (pre-)accelerated and sent
through an electromagnetic mass separator. The ions with the selected mass is then
(post-)accelerated to the desired energy required by the intended experiment with
the incident radioactive projectiles. An important point of view is the lifetime of
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Fig. 15.1 Schemes of possible setups of radioactive-beam facilities ISOL and IFF with pre- or
post-acceleration options

the radioactive species in relation to the diffusion time through the primary target,
which may limit the bea intensity. Another is the ionization efficiency, which varies
strongly for different elements and prevents the production of ions of refractory
elements such as Zr .

15.2.2 IFF and Post-Accelerating Schemes

This scheme has the following steps: First singly charged radioactive ions are pro-
duced by collisions of an energetic beam (e.g. protons) with a target, then these
ions are accumulated and “cooled” in a Penning trap, then in a bunch sent to an
ion source where in collisions with a dense and energetic electron beam “charge-
breeding” occurs, i.e. high charge-state ions are produced, which are extracted and
post-accelerated e.g. in a LINAC. A prominent example of such a facility is REX-
ISOLDE at CERN [KES00, WEN10, WEN12]. With this facility radioactive nuclei
in the mass range from 8Li to 224Ra in charge states up to 50+ for Ra have been
accelerated.
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15.3 Nuclear Reactions and the Way to Superheavies

The hope to extend the number of nuclear species beyond the known transuranium
nuclei includes the idea of finding long-lived nuclei in regions where the shell model
provides other energy gaps, leading to an island of stability. Figure 15.2 shows the
relevant region of the chart of nuclides together with lifetime predictions (extrap-
olations) from nuclear-model calculations [SOB07, MOE95]. The models are gen-
erally based on collective (liquid-drop) model assumptions and shell-corrections.
The elucidation of the chemical properties of the new elements is another goal of
research on transfermium nuclei but requires a sufficiently long lifetime of the nu-
clei, presently on the order of 1 s setting a limit at Z = 108. It is clear that reaching
further out in the (Z, N ) plane requires nuclear reactions between ever heavier reac-
tion partners, i.e. heavy-ion fusion reactions. One condition is that the fusion to new
compound nuclei occurs faster than the decay into any of the many open channels.
The latter is reduced when the compound system acquires excitation energies as
low as possible (“cold fusion”). The selection of suitable combinations of projectile
and target nuclei and incident energies is—due to uncertainties of theoretical (shell-
model) predictions—largely an empirical task. The recent discoveries of nuclides
with Z up to 118 were mostly the results of this approach. Depending on the atomic
number Z different methods have been applied starting from neutron-capture reac-
tions with neutrons from a reactor or from a reaction (e.g. 2H+ 9Be→ 10Be+ n),
multiple neutron capture in nuclear-bomb explosions, and fusion of ever heavier
(radioactive) nuclei with α’s, 10B, 13C, 18O up to 48Ca, 50Ti, and 54Cr. Table 15.1
lists the most recent cases. Most results have been reproduced independently in
different labs. “nC” stands for neutron capture, “CF = Cold Fusion” is the bom-
bardment of (near-)magic nuclei such as 208Pb or 209Bi with medium-weight heavy
ions heavier than 40Ar, such that at most 2 neutrons will evaporate after fusion. “HFI
= Hot Fusion I” means the bombardment of actinides (Z = 92− 98) with light ions
(Z = 6 − 12), “HFII = Hot Fusion II” has been the bombardment throughout of
actinides such as 242,244Pu or 249Cf with the rare, stable, and neutron-rich 48Ca, a
rather asymmetric fusion with the aim to lower the Coulomb barrier.

As an example the discovery of the so far heaviest element (Z = 118) is described
here. At Dubna a 1 pµA beam in the U400 cyclotron could be produced from the
rare isotope 48Ca that could be produced in high-flux nuclear reactors. The rare SH
fusion products (cross section about 0.7 pb) were separated from a very high back-
ground in a gas-filled recoil separator (DGFRS) with a magnetic field according to
mass/energy and charge state and focused into a detector system 4 m away. Time-of-
flight, energy, and position of the SH recoils together with the associated decay α’s
and fission products were measured with almost 100 % efficiency and high suppres-
sion ratios (up to 10−15) have been achieved. Experiments to synthesize element
120 are ongoing.

The island of stability concerns the half-life against spontaneous fission. In con-
trast to the cold-fusion method hot fusion SH’s produced go more in the direction
of this region and decay only by emitting α’s which allows identification by de-
cay chains through known nuclei. So far the measured half-lives follow the trend
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Table 15.1 On the way to superheavies, method of first production, and decay properties. Only
the first-discovered isotopes of a new element are listed

Element Z or
isotope

Reaction or
method

Decay Exp. half
life

Lab. Year Pres. No. of
isotopes

Z ≤ 100 (Fm) nC α, SF LBL 1940

LANL –

Argonne 1955

Z ≤ 106 (Sg) HFI α/SF 32/55 s LBL 1957

Dubna 1974
262
107Bh CF α 84 ms GSI 1981 11
265
108Hs CF α 1.9 ms GSI 1984 12
266
109Mt CF α GSI 1982 7
269
110Ds CF α 179 µs GSI 1994 8
272
111Rg CF α 3.8 ms GSI 1994 7
277
112Cn CF α 0.69 ms GSI 1996 6
283,284113 CF α 0.1/0.48 s Dubna/LLNL 2003 6
289
114Fl HFII α 2.6 s Dubna/LLNL 1999 5
287114 HFII α 0.48 ms Dubna 2004 5
288,291115 HFII α 173 ms Dubna 2007 4
290
116Lv HFII α 7.1 ms Dubna/LLNL 2000 4
293,294117 HFII α 14/78 ms Dubna/LLNL 2010 2
294118 HFII α 0.9 ms Dubna 2007 1

predicted by modern macroscopic-microscopic models including shell corrections
[MOE95, MUN03, SOB07, STR66]. The identification of the exotic nuclei is by
their decay, e.g. in α-decay chains via already known nuclei and ending in sponta-
neously fissioning nuclei in a region with lowered fission barrier heights. For more
details see the recent Refs. [HOF10, OGA10, HOF00, MOR04, OGA07]. For recent
predictions up to Z = 120 see also Refs. [SOB10, SOB11].

It is clear that dedicated facilities to produce and accelerate the heavy-ion species
with sufficient intensities had to be developed. There are four main laboratories that
have advanced these technologies: Berkeley, Dubna, RIKEN, and GSI(Darmstadt).
Some more details are described in Chaps. 16 and 13. A number of references
describe the development of the field, especially the technically refined appara-
tus e.g. of the separators SHIP at GSI and DGFRS at Dubna in more detail, see
[SEA94, ZAG06, BLO10, HOF00, MOR07, OGA07, HOF12, OGA13, MOE09].
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Part II
Tools of Nuclear Reactions



Chapter 16
Accelerators

The energy dependence of the cross sections and polarization observables of nu-
clear reactions is—besides angular distributions that reveal basic information about
angular momenta involved—the most prominent feature. Salient examples are the
existence of resonances in excitation functions, which correspond to excited states
in the continuum of compound nuclei but reach into the region of highest ener-
gies where “new” particles such as the �, the J/Ψ or the Higgs boson show up as
resonances. Thus, the wealth of nearly all important knowledge about nuclear and
particle interactions is due to the use of ever larger and more sophisticated acceler-
ators. In addition, and only partly noticed by the public, applications of accelerators
have multiplied in recent years; not the least important uses are in nuclear medicine
and cultural sciences such as archaeology. Here, the basic principles of the very dif-
ferent accelerating schemes will be described. No completeness on technical details
or many different designs and installations can be aspired here.

16.1 Electrostatic Accelerators

16.1.1 The Cockroft-Walton Accelerator

Though not the first accelerator generally, the Cockroft-Walton accelerator was the
first to be used for initiating a nuclear reaction (the reaction 7Li(p,α)4He with
a proton energy of 600 keV) in 1932 [COC32, COW32]. It used the voltage-
multiplication circuit of Schenkel, Delon, and Greinacher and is also known as
Cascade generator. One of the principles still in use is the subdivision of the to-
tal voltage across several accelerating gaps in order to even out the electric field
strength. The high voltage is limited to about 2 MV by the dielectric strength of the
surrounding air. Thus, by enclosing the accelerator by a pressure tank filled with
insulating gas at higher pressure enabled voltages up to 6 MV. Because of its reli-
able and stable operation the Cockroft-Walton accelerator is still widely used as first
accelerator stage of the large accelerator installations such as CERN, BNL, ANL,
GSI etc. Figure 16.1 shows the scheme of a typical Cockroft-Walton machine.

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
DOI 10.1007/978-3-642-53986-2_16, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 16.1 Typical setup and picture of a classical low-energy Cockroft-Walton accelerator. On
the left in both pictures the voltage multiplier, on the right the accelerating tube in vacuum, an
ion source on the top, lenses for beam focusing, and possibly a target at ground potential (or an
efficient beam forming system of lenses when used as an injector)

16.1.2 The Van-de-Graaff (VdG) Accelerator

Almost simultaneously R.J. Van de Graaff developed another method to produce
high voltages [VDG31]: An endless insulating belt running between ground po-
tential and the inside of a high-voltage terminal transports charge that builds up
the desired terminal voltage of up to 15 MV. This value requires a pressure tank
with insulating gases such as CO2, N2, or SF6 at pressures up to 12 bar. The total
electric field is homogenized by a modular design of the entire structure including
the accelerating tube and the mechanical structures with the electrodes kept at con-
stant voltage steps (typically ≈40 keV/inch) by a resistor chain. These electrodes
of aluminum, stainless steel, or titanium are glued or fused together with insulating
ceramic or glass elements. The voltage-holding capability of these structures, the
dielectric strength of the gas, and the resulting necessary size of the tank limit the
maximum voltage. The single-ended VdG machine requires an ion source in the
terminal with remote controls etc. Figure 16.2 shows the principle of a single-ended
VdG accelerator. Modern designs place the entire system in a pressure tank and use
modular acceleration tubes consisting of many flat electrode disks glued to ceramic
or glass spacing rings with high vacuum inside.

The VdG principle has been extended into a design, the Tandem Van-de-Graaff
accelerator, that avoids this problem, and at the same time has a number of impor-
tant advantages: the high voltage is put to multiple use by injecting first negative
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Fig. 16.2 Typical setup
scheme of a classical
low-energy single-ended VdG
accelerator. On the left the
moving belt or chain charging
system on the right the
accelerating tube with
vacuum, a positive ion source
on the top, lenses for beam
focusing, and possibly a
target at ground potential (or
an efficient beam forming
system of lenses and
deflection magnets when used
as an injector)

ions, have them stripped in the terminal (by a gas in a stripper tube, but mostly by
very thin carbon foils) into a number of charge states Z of positive ions that are
accelerated back to ground potential thus acquiring kinetic energies

T = (1+Z)eUterminal. (16.1)

Not only the higher energies, especially for highly-charged heavy ions, but also a
number of other features made these machines the “workhorse” of many low-energy
nuclear laboratories. These are:

• Feedback circuits, coupled to sensing the beam position after a deflection magnet
(measuring the momentum of the particles) and sending a controlled electron
current from a corona-needle set to the terminal provide a fine and fast adjustment
of the terminal voltage, resulting in a good energy resolution (and stabilization)
on the order of ≈0.1%.

• The need to produce negative ions imposes the restriction that not all atoms form
negative ions of sufficient lifetime (e.g. Ne or N). On the other hand, especially
with modern sputter ion sources, the number of different negative ions from many
isotopes, which can be produced is immense. The changes from one isotope to
another can be done very quickly.

• The simple methods of charging the belt or chain by controlling the belt-charge
current make energy changes very quick and easy, requiring sometimes some
high-voltage “conditioning” of the accelerator parts.

Thus, the Tandem VdG machine is a very versatile tool for many applications. Fig-
ure 16.3 shows a typical tandem Van-de-Graaff accelerator scheme. The actual ac-
celerators follow horizontal (HVEC) as well as vertical (NEC) designs, have tank
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lengths up to 20 m, diameters up to 12 m and terminal voltages up to 20 MV. Thus,
for protons energies of several tens of MeV, for heavy ions such as e.g. 16O in
higher charge states >100 MeV are possible. A unique application of the tandem
VdG principle is Accelerator Mass Spectroscopy (AMS), see Sect. 20.1.

16.2 RF Accelerators

16.2.1 The Linear Accelerator (LINAC)

The very first accelerator design was a LINAC prototype by R. Wideröe at Aachen
Technical University in 1928 [WID28] after an idea of G. Ising [ISI24]. The idea
was, because the maximum voltage across an accelerating gap was limited, to use
such a given voltage more than once, i.e. by accelerating ions by the same phase of
an RF voltage while shielding them from the opposite phase. This led naturally to the
drift-tube design with increasing lengths of the drift tubes according to increasing
ion velocity. Naturally, for relativistic particles, especially electrons, the lengths are
constant. For higher energies a different design with less RF losses was developed
by L.W. Alvarez in 1946 [ALV46] by mounting the drift tubes in an RF cavity with
a standing-wave electric field such that the travelling ions always see an accelerating
field. In both cases the synchronization of the particle motion requires that the drift-
tube lengths increase with∝√U0 where U0 is the peak value of the RF voltage. Fig-
ure 16.4 shows both designs schematically. Electron LINACs are simpler, consisting
of cavities with equally-spaced disk-loaded electrodes. Typical modern applications
of hadron LINACs are injectors for high-energy accelerators such as the UNILAC
at GSI (Darmstadt) or high-current medium-energy installations such as pion facto-
ries (LANL) or spallation-neutron sources. Electron (positron) LINACs such as at
SLAC (Stanford) allow the highest possible energies due to lower synchrotron radi-
ation losses than for circular accelerators (synchrotrons). Consequently, the planned
next-generation electron-positron collider, intended for the study of Higgs physics,
will be of LINAC design.

16.2.2 The Cyclotron

The idea of a proton beam being bent on circles by a homogeneous magnetic field
B while being accelerated by an RF field across a gap led E.O. Lawrence to invent
the cyclotron in 1931 [LAW31, LAW32]. To do this using an electric RF field with
fixed frequency and to keep the particle motion synchronized with it the path length
in B the radii of the circles had to increase accordingly. With

R = mv

qB
, (16.2)



256 16 Accelerators

Fig. 16.4 Schemes of the Wideröe (upper picture) and the Alvarez (lower picture) designs of
LINACS

where m and e are the particle’s (relativistic) mass and charge and v its velocity, and
in addition v =Rω (ω the angular velocity), we have the condition

ω= q

m
. (16.3)

Thus ω is independent of v. If ω is interpreted as the RF’s circular frequency the
particle will always arrive at an accelerating gap with the same (accelerating) RF
phase. Figure 16.5 shows very schematically the essential structure of a classical
cyclotron. The classical cyclotron can accelerate all particles with about the same
ratio q/m. The relativistic energy limit for protons is about 50 MeV where m begins
to deviate substantially from m0, the rest mass.

m= m0√
1− v2/c2

. (16.4)

In addition, the size of the magnetic region, i.e. the maximum trajectory radius Rmax
and the value of B limit the maximum energy T (T ∝R2

maxB
2). Thus, the practical

limits for deuterons, or 4He2+ are about 100 and 200 MeV, resp. The largest such
cyclotron was the 184-inch machine at Berkeley.

The idea to increase B in step with increasing m leads to the difficulty that such
a magnetic field defocuses the particle beam. Another idea is to decrease the RF fre-
quency during acceleration, which necessarily allows only pulsed operation. A way
out has been to decrease the field B with the beam radius R while making use of an-
other (and stronger) additional focusing principle: Strong Focusing. It relies on the
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Fig. 16.5 Scheme of the classical cyclotron. B is a magnetic field produced by an electromagnet.
The acceleration structure is in a vacuum chamber containing the “Dees”, so called after their
shape, which provide field-free space for the particles during the decelerating phase of the RF
voltage on the dees. In reality the radii increase as

√
T and the trajectories get accordingly closer

to each other with increasing energy

Fig. 16.6 Schemes of the
sector-focusing (left) and
spiral-sector (right)
cyclotrons. High (H )- and
low (L)-field regions are
produced by ridges and
valleys in the pole surfaces

fact that a combination of two equally strong optical elements, one focusing (F ),
the other defocusing D), with a certain drift space of length d between them (O),
is always focusing (FODO or DOFO structures), see Sect. 16.3. This is achieved in
cyclotrons by Sector Focusing SF, i.e. by shaping the magnetic field in radial sectors
such that high- and low-field regions alternate periodically: SF cyclotrons. In addi-
tion, giving the sectors a spiral shape helps to compensate for the relativistic mass
increase: spiral-sector cyclotrons, see Fig. 16.6. The modern spiral-sector cyclotrons
are also called Isochronous Cyclotrons and are in use at many installations, e.g. as
50 MeV proton injector to the COSY cooler synchrotron at Jülich. At PSI (Villigen,
Switzerland) a smaller isochronous cyclotron injects protons into another such cy-
clotron that, however, has completely separated magnetic sectors, delivering up to
590 MeV protons. At Michigan State, at Groningen and LNS Catania superconduct-
ing cyclotrons have been operating. Figure 16.7 opens a view into the spiral-ridge
structure of the superconducting spiral cyclotron at LNS Catania [LAT12].
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Fig. 16.7 View into the
spiral-shaped
superconducting polefaces of
the LNS SC cyclotron, that
have a diameter of 1.8 m,
magnetic fields between
2.2–4.8 T, accelerating fully
stripped light ions such as
12C up to 80 MeV/u

16.2.3 Betatron and Synchrotron

The betatron principle and beam stability criteria were also published first by
Wideröe in 1923 (actually he obtained a patent on it) and practically realized first
by Kerst (with theoretical help from Serber) in 1940. Betatrons have mainly been
used for electron and bremsstrahlung irradiation in medicine, but have now been
superseded by LINACs. Only for portable X-ray applications (e.g. materials testing,
art investigations etc.) are betatrons still in use.

The principle of particle acceleration in time-varying magnetic fields was also
applied to synchrotrons that combine several principles such as guiding the beam
independent of energy on a fixed radius thus allowing for smaller magnets than in
cyclotrons, but requiring ramping up magnetic and RF accelerating fields with en-
ergy. The principle of AG or Strong Focusing in addition made smaller magnet gaps
possible, see Sect. 16.3.3. Instead extra focusing multipole elements between the
bending dipole magnets have also been used. Synchrotron energies in principle are
not limited. However, size of the accelerator ring, its cost, and its complexity set
practical limits (the project of a superconducting super-collider (SSC) was there-
fore abandoned midway). Superconducting magnets with higher magnetic fields as
well as SC RF cavities provide higher energies for a given accelerator circumfer-
ence. At CERN, Geneva, the presently largest synchrotron-type collider LHC (Large
Hadron Collider) is designed to provide collision energies for protons on protons
of 14 TeV. At half this energy the long-sought Higgs boson (the keystone of the
Standard Model) was found recently.

A special type of synchrotrons with relevance to nuclear reactions are medium-
energy storage rings, with the capacity of beam cooling. In a storage ring the beam
circulates many times and crosses an internal target region not once but e.g. a million
times. This requires excellent ultra-high vacuum, carefully designed beam optics,
and excellent beam stability. Targets may be internal, i.e. in the accelerator beam,
or the beam may be extracted. Of course, an internal target can only be very thin,
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Fig. 16.8 View of the COSY cooler ring with a number of installed experimental areas at positions
with suitable optical properties

which favors the use of jet-like beam targets such as polarized beams from ABS
(see Sect. 16.5.1), liquid-cluster targets, or targets consisting of thin filaments only.
A successful example of such a facility is COSY= Cooler Synchrotron at the Jülich
center. Figure 16.8 shows a top view of COSY-Jülich. Another feature successfully
applied in medium-energy facilities is the principle of phase-space “cooling” of cir-
culating beams, i.e. basically a reduction of the phase-space volume (seemingly in
contradiction to Liouville’s Theorem, see below). The acceleration of polarized par-
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ticles in such a ring requires special care, because the spin not only precesses in the
many magnetic fields but at certain energies there are resonances, which, after small
perturbations, can lead to strong oscillations and therefore depolarization. Several
methods to either avoid depolarizing resonances such as by using “Siberian Snakes”
or letting the polarization vector completely invert have been designed and success-
fully applied. In a circular accelerator with dipole magnets the polarization vector
precesses around the magnetic field direction (see Sect. 16.8.1) except when both
are exactly parallel. Thus, in order to have a fixed polarization direction at an exper-
imental station any precession must be compensated e.g. by a spin-rotating device
such as a solenoid. A Siberian Snake in the original version is a sequence of dipole
magnets acting in two dimensions such that the polarization direction is restored in
each cycle. Resonances that flip the spins can be overcome by kicker devices that
provide a fast crossing of the resonance energies during ramping of the energy of a
synchrotron.

16.3 Beam Forming and Guiding Elements

Inevitably experimenters require sufficiently intense beams on target, especially
when using rare-ion or polarized beams in order to get “good statistics” (small sta-
tistical errors in reasonable time). In addition, nuclear experiments rely on “good”
geometries, i.e. well-defined collimated incident beams with low divergence in order
to have well-defined scattering angles. Thus, a beam from the source to the target
has to be guided, deflected, and focused by lenses and deflectors, both electric or
magnetic. Besides technical questions concerning the design of these devices the
governing physical principle is the Liouville Theorem: Under the action of conser-
vative forces the 6N -dimensional phase-space volume of an ensemble of N particles
(such as a beam) remains invariant under these operations. For one particle:

� �p ·��x = const. (16.5)

� �p and ��x are the spread in momentum (i.e. also velocity) and space of a given
beam at a given location along a beam trajectory. The phase-space volume of a beam
from an ion source is always finite and is therefore a limiting factor of the quality of
a beam at the target. Consequences of the Liouville theorem are:

• Focusing to a smaller spot is always connected to an increase in divergence and
vice versa. The special requirements of the experiments determine the beam-
formation details.

• Acceleration of a beam, which corresponds to an increase in the longitudinal part
of phase space (∝ U1/2) will lead to a decrease in the lateral four-dimensional
phase volume (for one particle).

• We measure the “quality” of a beam by defining its emittance. For a given en-
ergy the boundaries of the phase-space volume filled by beam is used for this
discussion; with z fixed and pz ≈= const the momenta px/pz and py/pz define
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the “divergences” p′x and p′y . If, for simplicity, we assume rotationally symmet-
ric beams or beams, for which the two transverse phase spaces are decoupled
(x = y = r and p′x = p′y = p′r ) the emittance is

ε = r · p′r · eU1/2. (16.6)

• To ensure maximum transmission of a beam through the entire system a sim-
ilar quantity acceptance can be defined for each device along the beam path
(diaphragms, lenses, deflectors, vacuum chambers, accelerator tubes, stripping
canals etc.), which is the maximum phase space volume that will be transmitted
through the device. Transmission must be optimized by matching emittances to
acceptances at each location z. Matching in two dimensions can be visualized
by geometrical figures in the r,pr plane. Emittance figures, which often are rep-
resented by phase ellipses of constant area are sheared by lenses as well as by
drift spaces. Matrix methods are used for transporting the figures along the beam
path and for doing the matching. In the simplest approximation the transport of
beams (and its representation by transport matrices) are linear, which is fulfilled
for paraxial rays or beams, i.e. when the radii and divergences are small as com-
pared to system dimensions. Then (again for one spatial dimension)

(
x′
p′x

)
=
(

a b

c d

)(
x

px

)
(16.7)

with

M=
(

a b

c d

)
(16.8)

the transfer matrix of the optical element. Its elements may be identified with
properties of real systems. The element c is connected with fcal properties, the
element b is the length of a drift space. For discussion of the six-dimensional
phase space the dimension of M may be 4× 4 or even 6× 6 where, with no cou-
pling between two dimensions (no angular momentum), there are two (or three)
independent submatrices.

• The Liouville theorem seems to set an absolute limit to improving the beam qual-
ity. However, e.g. the action of diaphragms will change the phase volume, but
at the expense of intensity. Better methods are: Stochastic Cooling where large
transverse components of the phase space of beam particles are sensed and elec-
trically corrected (like by a Maxwell’s demon) and Electron Cooling where such
large transverse components are exchanged with small components of an electron
beam of equal velocity by Coulomb interaction. Both methods are successfully
used in circular accelerators such as COSY-Jülich, allowing for high-precision
experiments with high beam and target densities and well-defined interaction ge-
ometries.

Electric or magnetic fields can act as lenses for ion beams.
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Fig. 16.9 Electric field and potential distributions in an immersion lens that, when run with accel-
erating polarity, focuses a beam, conversely defocuses it. The (rotationally symmetric) fields seem
to compensate each other but the focusing force, which ideally goes ∝r at the entrance is stronger
than the defocusing force at the exit. The potential on the axis is also shown (dotted line). The
shaded area indicates the approximate length (about one tube diameter) of the field region

Fig. 16.10 The two
successive gaps of an
einzellens are always
focusing due to the principle
of strong focusing, see below,
whether in accelerating or
retarding mode. However, the
optical properties, e.g. the
maximum beam diameter
depend on the mode

16.3.1 Electrostatic Lenses

The prototype of an electrostatic lens is a rotationally symmetric gap, across which
an electric field �E exists, i.e. two conducting tubes at different potential. Depending
on polarity this field may accelerate or decelerate a beam with energy qU0. The
force component qEr is directed either inward or outward, and the lens changes the
velocity of the beam. Figure 16.9 shows the electric field and potential distributions,
and the shape of the central potential Φ(z) on axis. By combining two successive
gaps with different polarities at a distance d one obtains the widely used einzellens
that does not change the beam velocity (i.e. the functions of focusing and velocity
change are decoupled). Such a lens is always focusing (except when equipped with a
grid in the center plane). This can be understood with the very important principle of
strong focusing, explained below: The combination of a focusing and a defocusing
element at a certain distance d is always focusing, which is already known from
light optics. Figure 16.10 depicts the geometry and fields in a schematic einzellens.
In reality the electrodes have to be in high vacuum.
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Fig. 16.11 Typical double-focusing dipole magnet used for momentum analysis and feedback
control of a tandem VdG accelerator via a difference signal from the exit slit electrodes

16.3.2 Magnetic Lenses

The simplest magnetic lens is just a solenoid in beam direction. More common are
magnetic multipole lenses, especially quadrupole lenses.

Already magnetic dipole fields B do not only bend beams but have focusing
effects. Particles entering at angles relative to the “reference” central beam have
longer or shorter paths through B and are therefore more or less deflected leading
to a more or less well defined crossover for an initially divergent beam. The magnet
can be made approximately double-focusing, i.e. focusing in two dimensions x and
y, by shaping the entrance and exit polefaces such that the central beam does not
enter and exit the polepiece perpendicularly, but at 26.6◦, and the object and image
distances are just 2R with R the curvature radius of the dipole magnet. Such dipoles
are widely used e.g. in tandem laboratories where they serve also for energy control
by selecting a small momentum interval across a pair of exit slits while keeping the
beam focused in two dimensions. Figure 16.11 shows a typical scheme of a double-
focusing analyzing magnet at a VdG laboratory.

Electrostatic lenses (and also electrostatic deflectors) become inefficient at higher
beam energies (their action goes as �U/U0 with limited �U , the voltage across the
gap and U0 the equivalent voltage of the beam energy qZ0). Thus magnetic de-
vices are predominantly used. An ion beam in a magnetic quadrupole field “sees” in
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Fig. 16.12 Magnetic field distribution in a quadrupole magnet. The beam direction is assumed
along the z axis. The upper right figure explains the action of a quadrupole singlet in two planes,
the lower the double-focusing of a quadrupole doublet. This is an example of “strong” (or AGS)
focusing in two dimensions x and y, see next subsection

one direction an harmonic restoring force with trajectories being harmonic (sin z or
cos z) functions leading to beam crossover at a certain distance (a focus for an inci-
dent beam parallel to z). Likewise in the perpendicular direction there is a diverging
force following hyperbolic functions (sinh z and cosh z). The combined action of
such a quadrupole singlet is stigmatic focusing, i.e. the image of a point (or small
circular) source becomes a line in the plane perpendicular to the focusing direc-
tion. For a singlet with x and y fields interchanged we get the line focused in the
perpendicular direction. Combining the two singlets with a certain distance d be-
tween them, forming a quadrupole doublet, we obtain focusing in two dimensions,
i.e. with a point (or small circular) image of a point (or small circle). Figure 16.12
illustrates the action on a beam of charged particles. The equation of motion with
the Lorentz force acting in its simplest form is that of a harmonic oscillator

x′′ + kx = 0, (16.9)

where k>
<

0 depending on whether we have a focusing/defocusing quadrupole. k is
the gradient of the quadrupole field, with � its length, and by defining φ =√k · �,
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we have the focusing/defocusing transfer matrices

MF =
(

cosφ 1√
k

sinφ

−√k sinφ cosφ

)
and MD =

(
coshφ 1√

k
sinhφ√

k sinhφ coshφ

)
.

(16.10)

16.3.3 Strong Focusing

The principle of “strong focusing” has been very fruitful for different development
of and around accelerators. It was independently invented by Christofilos [CHR50]
and Courant, Livingston and Snyder [COU52]. It can be stated as: The combination
of two optical elements behind each other, one focusing (F ), one defocusing (D),
often with equal refractive power, at a distance d > 0 from each other, results in an
element that is always focusing. The matrix representations of thin lenses (in one
spatial dimension) and drift space (O) in phase space are

F=
(

1 0
1

fF
1

)
D=

(
1 0
1

fD
1

)
O=

(
1 d

0 1

)
(16.11)

where fF < 0 and fD > 0 are the focal lengths of the F and D elements, and d > 0
the length of the drift space between them. The combination of the three elements
(FOD) is a product of the three matrices

F ·O ·D =
(

1+ d/fD d
d

fF fD
1+ d/fF

)

−→
(

1+ d/f d

− d

f 2 1+ d/f

)
for the case of f = fD =−fF . (16.12)

The focal length of the ensemble is fF fD

d
, which is always <0 if fF and fD have

different signs, i.e. the element is always focusing.
Besides applications such as the electrostatic einzellens and the quadrupole

doublet this principle has been used in circular accelerators and enabled to go
to the highest energies. The development of the classical cyclotron into modern
isochronous cyclotrons required some focusing element because the fringe fields of
the magnet near the outer parts of the beam path act defocusing in the direction
of the central magnetic field. Shaping the magnet such that the pole gap becomes
narrower at the edges defocuses the beam in the radial direction. The solution were
sections with stronger B fields alternating with weaker ones by having wider and
narrower gap sections (see Sect. 16.2.2). Thus, focusing in axial and radial direc-
tions was provided.

In synchrotrons with the beam being guided by separated dipole magnets this
principle was applied in different ways. By tapering the polepieces of the dipoles,
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i.e. giving the magnetic field a gradient the Lorentz force gets a component that
focuses in one direction and defocuses in the perpendicular one. By alternating
dipoles with gradients outward and inward we get again double focusing (i.e. in ra-
dial and axial) direction. This principle is therefore also called Alternating-Gradient
Focusing and gave one of the first such accelerators its name AGS (Alternating-
Gradient Synchrotron at Brookhaven National Laboratory) and contributed practi-
cally simultaneously to the successes of the first CERN PS (proton synchrotron)
with T = 25 GeV. One of the main advantages was that the magnet gaps could
be much smaller (“strong” focusing) and therefore much higher energies could be
reached than with straight magnets (ZGS: zero-gradient synchrotron at Argonne).
The focusing can also be obtained with straight dipoles plus extra focusing ele-
ments such as quadrupoles and sextupoles. For details see a number of references
such as [HIN97, WIL01, LEE11, CHA13, WIE93].

16.4 Ion Sources

Ion sources for accelerators in nuclear physics are essential tools. Many differ-
ent designs have been developed but over time some standard configurations have
emerged. For nuclear-reaction work some special features are required or advanta-
geous:

• Versatility: e.g. the possibility of producing many different kinds of beams (dif-
ferent ion species) and the ability to switch quickly from one to the other.

• High beam currents.
• Long running times and at the same time easy and quick maintenance.
• High brightness, i.e. high intensities into a small phase space.

To optimize these with given sources often resembles an art more than a science
(one might speak of “so(u)rcery”).

16.4.1 Unpolarized Beams

The different designs of current ion sources for accelerators can be classified es-
pecially according to the polarity of the ions. Tandem VdG’s and some cyclotrons
need negative ions. They can be produced in two ways: either from an intense pos-
itive ion source such as a duoplasmatron with following charge exchange or in a
direct-extraction negative-ion source such as Cs sputter sources.

The RF Ion Source In a radiofrequency (RF) discharge at reduced pressure (i.e.
sufficiently long path lengths for electrons and gas atoms/molecules) collisions be-
tween electrons and heavy particles lead to ionization and a plasma is formed, from
which ions may be extracted. The excitation may be either electric where the RF
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Fig. 16.13 Cut view of a
standard RF positive-ion
source

is applied by electrodes (see Fig. 16.13) or magnetic by a coil around the vacuum
vessel.

Typically a few mA of protons, deuterons and He isotope-ions can be extracted.

The Duoplasmatron Source Invented by M. von Ardenne in 1948, the duoplas-
matron has been a true workhorse for positive-ion work, i.e. for single-ended VdG’s,
mainly for protons and deuterons, and as primary source for charge exchange to
negative ions of H, D, 3,4He, and 6,7Li. Figure 16.14 shows a scheme of a duoplas-
matron. The basic principle is to produce a dense plasma region by ionization by
an electron beam in a strong magnetic field, in which the electrons spiral and from
which the positive ions can be extracted. Like in all ion sources the size and shape
of the extraction canal and optics determines the phase space, i.e. the optical quality
of the beam.

Direct-Extraction Negative-Ion Sources From the off-axis region of a duoplas-
matron negative ions can be extracted. More powerful and versatile, however, is the
sputter ion source with Cs+ as sputtering beam. Sputtering from all surfaces by ions
is a common phenomenon and is e.g. used in industry for surface modifications. The
efficiency of the sputtering process depends on the material and its structure, but the
atomic weight of the sputtering ion should be as high as possible. When using a Cs
beam, which can be produced conveniently and efficiently by surface ionization on
a hot tungsten surface, its electro-negativity causes the sputtered atoms, molecules,
or clusters to attach an electron. Thus, negative ions can be extracted directly. There
is a large choice of the material to be sputtered, and provided negative ions can
be formed (i.e. live long enough, which is not the case e.g. for 20Ne and 14N),
intense beams of negative ions can be extracted and injected into a tandem VdG.
Figure 16.15 shows a design that has become a standard. The quick change of ion
species can be effectuated by a wheel-type or other design of sputter-target reservoir.

For the special importance of tandem VdGs and their ion sources for accelerator
mass spectroscopy see Sect. 20.1.

Charge-Exchange Negative-Ion Source Especially for negative 3,4He and 6,7Li
ions at tandem VdG accelerators the combination of a duoplasmatron and a charge-
exchange section with Li vapor is used. Figure 16.16 shows such a system schemat-
ically.
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Fig. 16.14 Cut view of a standard duoplasmatron positive-ion source

Fig. 16.15 Cut view of a standard negative-ion sputter source. The Cs vapor from the Cs oven
when touching the ring-shaped hot W ribbon is ionized. The electric fields are such that the positive
Cs ions are accelerated and focused to a fine and intense spot on the sputter-material pill and, at
the same time, the negative ions formed are extracted and focussed into a negative-ion beam

There have been other types of ion sources, which will not be discussed here:
the ECR (electron-cyclotron resonance) ion source, different types of Penning ion
sources and the special sources used in cyclotrons. For fusion research intense neu-
tral beams are required for injection into fusion reactors with strong magnetic fields,
which are also produced by charge exchange from intense charged-particle sources.
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Fig. 16.16 Cut view of a negative-ion source where the negative ions are produced in a charge-ex-
change region with (mostly used) Li vapor. The positive ions come from a standard duoplasmatron
source

16.4.2 Polarized Beams and Targets

The rather complex sources of spin-polarized ions for accelerators have had a long
development history since the first publication of the principle of such sources
[CLA56, CLA59] and the first nuclear reaction with polarized particles at Basel,
the 3H( �d,n)4He reaction on resonance at Ed = 107 keV [RUD60]. They are based
on spin-state separation of the atomic electrons and transfer of the polarization to
the nuclei via the hyperfine interaction, because the magnetic moments of nuclei are
about 1800 times smaller than the Bohr magneton. There are essentially two types
of such sources for isotopes of hydrogen (and alkali atoms; for polarized 3He beams
of sufficient intensity no viable scheme has been developed, in contrast to polarized
targets).

• The ground-state atomic beam source (ABS) with different methods of ionization
that is now the superior method concerning intensity.

• The Lamb-shift polarized-ion source (LSS), which uses the tiny Lamb shift to
polarize ions.

The scope of this book allows only a short summary of these sources. For some more
detail, especially also about details of the description of polarization see Chap. 5 and
[HGS12] and the relevant references therein.

The Atomic Beam Polarized-Ion Source (ABS) The separation of spin states
(actually: hyperfine states) in an ABS, like in the famous Stern-Gerlach experiment
[GER22], is achieved by the different forces on magnetic moments in an inhomoge-
neous magnetic field. Due to the small nuclear magnetic moments, as compared to
the electron’s, the coarse separation occurs according to electron spin projections (in
sextupole fields this means: focusing or defocusing). The nuclear spin contributes
only small corrections, and nuclear polarization needs additional measures. The
force of the inhomogeneous magnetic field acting on such an “effective magnetic
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Fig. 16.17 Hyperfine Zeeman energy levels (Breit-Rabi diagrams) and “effective” magnetic mo-
ments in units of μB (∝ the forces) of H and D in an inhomogeneous magnetic field with
x = B/Bcrit. The deflecting force in an inhomogeneous magnetic field B is μeff · ∇| �B|

moment” that is defined as derivative of the energy W(B), given by the Breit-Rabi
formula (see below), after the field strength B is

�F =−�∇WF,mF
=−∂W

∂B
�∇B = μeff �∇B. (16.13)

Only for the “pure” components is μeff = μB . Therefore, the separation according
to the mJ works only for large B . Figure 16.17 shows the Breit-Rabi diagrams to-
gether with the effective magnetic moments of the Zeeman components as functions
of the magnetic field. The principles of ABS polarized-ion source, e.g. for use on
accelerators and thus obtaining much higher intensities at high beam quality and
complete control over the polarization parameters, as compared to using nuclear re-
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actions as primary source of polarized particles, were first formulated by Clausnitzer
et al. [CLA56, CLA59].

The radial dependence of the force on magnetic moments is given by rL−2 (L=
multipole order of the magnetic field). Thus, the force in a quadrupole field is con-
stant and that in a sextupole is linear in r . In a sextupole there is a lens-like focusing
action on one spin component whereas the other is being defocused. Therefore, an
“optics” for spin-magnetic moments with features like beam transport, phase space,
emittance, acceptance in analogy to the optics of charged particles in electric fields
can be defined and be used to optimize a Stern-Gerlach system (“matching”). Note,
however, that the sextupole provides no state separation on the axis, whereas for
the quadrupole the state separation force is uniform with r , but there is no focus-
ing. For several reasons (among these better pumping, the requirement of leaving
space for intermediate radiofrequency transitions, and higher flexibility to optimize
the atomic-beam optics) modern ground-state atomic-beam polarized ion sources
(ABS) use not one, but a number of spin-separation magnets. It is suggestive to
use a quadrupole magnet as first magnet leading to a better spin-state separation
and somewhat higher polarization. The main quantities characterizing an ABS are
the polarization p, the beam intensity I , but also the beam quality (“brightness” =
intensity per two-dimensional transverse emittance). From the point of view of min-
imizing the measurement time for a given statistical error in experiments the figure
of merit is p2I , which is valid for vector and tensor polarization components. When
ionization of the neutral beam takes place in a strong magnetic field the ion beam
acquires transverse momentum thus increasing the transverse phase space, i.e. the
emittance. Therefore the usual atomic-beam sources (ABS) have emittances (typi-
cally 2 cm rad (eV)1/2) about twice those of Lamb-shift (LSS) and colliding-beams
(CBS) sources (typically <1 cm rad (eV)1/2).

With the above outlines the principles of common types of polarized-ion sources
can be understood. These are:

• Ground-state atomic-beam sources (ABS). They differ in the way the atomic
beam is ionized:

– Electron-bombardment and ECR ionizers
– Ionizers with colliding beams of Cs0, H, or D
– Optically-pumped ion sources.

• Lamb-shift polarized-ion sources (LSS).

16.5 Physics and Techniques of the Ground-State Atomic Beam
Sources ABS

16.5.1 Production of H and D Ground-State Atomic Beams

In order to produce atomic beams of H/D dissociators of different designs, all based
on radiofrequency (RF) excitation, are used. The atomic beam intensity depends on
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Fig. 16.18 Principle of the ABS. Depending on the type of ionization positive ions (electron-im-
pact ionizer) or negative ions (directly: colliding-beams source, CBS, indirectly by charge ex-
change from positive ions) are produced. The different components are discussed briefly in the
text

a number of parameters: gas pressure and gas flux, RF power, recombination rate
on surfaces and their temperatures, and intra-beam scattering processes. After many
years of development (since 1965) optimal design schemes have evolved that will be
described here. Figure 16.18 shows schematically the main components of a modern
atomic-beam polarized-ion source.

16.5.2 Dissociators, Beam Formation and Accommodation

Dissociators Two types of dissociators have evolved, RF discharge and mi-
crowave dissociators. In both a gas discharge is excited by an RF field in a cylindri-
cal Pyrex glass or quartz vessel producing atoms from H2 or D2 being fed in from
one end and H or D atoms streaming out at the other.

The discharge is maintained by a coil around the glass bottle (magnetic coupling)
and normally runs at about 13 MHz with an RF power up to 200 W. The proper
matching of the discharge assembly to a power oscillator is achieved by a matching
circuit. The atomic beams are formed by a nozzle, typically from aluminum with
a canal about 8–20 mm long and 2–3 mm wide. They have a velocity distribution
somewhat narrower than Maxwellian due to the action of the nozzle. The nozzle is
cooled, which is essential for several reasons: Slower atoms are accepted more eas-
ily by the first separation magnet, they are deflected more strongly, the chromaticity
of the magnet system is reduced, and the beam has a higher density ρ = j/v in a
following ionizer volume (j is the particle number density of the beam, v the par-
ticle velocity). The intensity of the beam is determined by a number of parameters:
The discharge is burning best in a certain pressure range, within which the gas feed
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Fig. 16.19 Typical
nozzle-skimmer-collimator
arrangement of ABS sources.
Typical diameters: nozzle
1 mm, skimmer 1.5 mm

should be as high as possible. The limit is, however, set by the pumping speed, with
which the space after the nozzle can be maintained at such a low pressure that the
mean free path is long enough to avoid or at least minimize intra-beam scattering of
the atoms. These conditions are constrained by the small available space for pump-
ing thus limiting the conductance, i.e. the effective pumping speed in this space.
Differential pumping has to be applied and better beam quality is achieved by a
skimmer. The collimator is necessary for differential pumping and facilitates main-
taining high vacuum in the separation-magnet regions. A typical setup is shown in
Fig. 16.19. As nozzle materials copper and aluminum have been used because of
their heat conductivity but due to layers formed on the inner surface the choice is
not critical for recombination. For the reasons discussed above, over the years, a
saturation of the polarized atomic-beam intensities achieved at slightly above 1017

atoms/s in the relevant region behind the last separation magnet is observed. The
role of cooling the dissociator arrangement is twofold: first the dissociator vessel
must be cooled to prevent the glass from heating up (causing background residual
gas and increasing recombination), secondly the nozzle must be cooled to make the
atoms slower. The effect of this is that the acceptance of the entrance to the sepa-
ration magnet system is increased, the separation power of the magnets improves,
and the ionization yield of an ionizer increases because the beam density ρ = j/v

is higher (j = beam particle current density, v = particle velocity). Some modelling
showed that the sum of these effects scales as ∝ T −3/2.

16.5.3 State-Separation Magnets—Classical and Modern Designs

Historically starting from the Stern-Gerlach spin-state separation magnet working
in one dimension only much better intensity can be achieved with rotationally-
symmetric magnetic fields provided by quadrupole and sextupole magnets acting
in two dimensions. Permanent magnets as well as electromagnets have been used
where the latter could be turned off for an unpolarized beam. However, the advan-
tages of permanent magnets of modern design (“Halbach” magnets) are such that
almost all sources use them.
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Multipole Fields The properties of magnetic multipole fields are:

Quadrupole Sextupole

Magnetic potential of multipole fields of order m:

Φ ∝ rm cosmφ (or) sinmφ)

m= 2 m= 3

Φ ∝ r2 cos 2φ Φ ∝ r3 cos 3φ

|Br | = (
B0
r0

)r |Br | = (
B0
r2
0
)r2

∇rB = B0
r0

∇rB = 2B0r

r2
0

Force on magnetic moment of an atom

F =−∇W =− ∂W
∂B
· ∂B

∂r
= μeff

∂B
∂r

Force is

independent of r proportional to r

Deflection with Harmonic or

constant force hyperbolic trajectories

Only sextupole fields focus the atoms like an optical lens. Atoms in the opposite spin
states are defocused. It is obvious that on the axis (in an infinitesimal volume) in a
sextupole there is no spin-state separation whereas in a quadrupole the separation
force is constant over the entire volume. At least in principle this should guarantee
a somewhat higher beam polarization than from a sextupole. The rather wide ve-
locity distribution of the atoms leads to a strong chromatic aberration of multipole
magnets. This can be partly offset by tapering the magnetic fields along the z axis.

Since about 1980 with the advent of improved magnetic materials sextupole mag-
nets follow a new design [HAL80]. Figure 16.20 [VAS00] shows the setup of such
a typical Halbach sextupole and a measured field distribution. With a modification
of the Halbach design, see Fig. 16.21 a poletip field of 1.8 T has been achieved. In
modern ABS an arrangement of several (typically four to six) separated short sex-
tupoles is used. The field strengths and locations of the magnets are determined by
numerical trajectory calculations taking into account other requirements such as op-
timum pumping and insertion of RF transition units. Figure 16.22 shows the results
from one such calculation.
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Fig. 16.20 Segment scheme and field distribution of a typical Halbach sextupole magnet [VAS00]

Fig. 16.21 View of the modified Halbach (“hybrid”) sextupole magnet developed for SAPIS-
Cologne with a measured maximum field value of 1.8 T. On the right a field image is shown
obtained with “Magna View Film”

16.5.4 RF Transitions

After a Stern-Gerlach device and in a strong magnetic field (e.g. in an electron-
bombardment ionizer) the particles in a beam are highly polarized with respect to
the spin of their valence electron, but nearly unpolarized in nuclear spin. For higher
intensities ionization in a strong magnetic field is necessary (see below). Therefore
high nuclear polarizations can only be achieved by RF transitions between hyper-
fine states. The adiabatic-fast passage method proposed by Abragam and Winter
[ABR58] as is explained in Fig. 16.23 is used throughout. Three field regions for
RF hyperfine transitions may be classified according to the value of the static mag-
netic field B0, e.g. in relation to the critical field Bcrit: weak-field (WFT, B0
 Bcrit,
transition frequencies typically 5–15 MHz), medium-field (MFT, B0 < Bcrit), and
strong-field (SFT, B0 ≥ Bcrit, transition frequencies typically several hundred MHz
to GHz) transitions. Another classification refers to the change of quantum numbers
by the transitions. Transitions within one F multiplet (�F = 0,�mF =±1) are π
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Fig. 16.22 Result of
optimized trajectory
calculations for a deuterium
beam through one quadrupole
and three sextupole magnets

Fig. 16.23 Semi-classical
explanation of the
“adiabatic-fast passage”
method of producing a spin
flip during passage through
an inhomogeneous magnetic
field

transitions and they are induced by the RF field B1 ⊥ B0. Transitions between dif-
ferent F multiplets (�F =±1,�mF = 0,±1) are σ transitions, and the two fields
are parallel to each other.

In the practice of polarized-ion sources the WFT and MFT used are low-B0 π

transitions. The WFT occur in the Zeeman region of the HFS where the mF states
belonging to one F are nearly equidistant, leading to multi-quantum transitions
within the F multiplets. The MFT are similar π transitions at somewhat higher
B0 and RF frequencies such that the energies of single-photon transitions in one F
multiplet are sufficiently separated, i.e. with a field region short enough that only
single transitions do occur. SFT, however, are σ or π single-quantum transitions at
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Fig. 16.24 RF transitions and transition types as functions of the field parameter x

still higher B0 between single HFS states. Figure 16.24 illustrates the three types of
transitions.

Quantum-Mechanical Treatment The quantum-mechanical transformation of
the two-spin system with time-varying magnetic fields (the “static” field B0 slowly
varying due to the particle motion in its field gradient 2�B0/�z and the (fast-
changing) RF field B1(ωt)) into a co-rotating system is equivalent to unitary trans-
formations of the Hamiltonian of the system. If the transformation is appropriately
chosen (i.e. such that the rotation occurs with the Larmor frequency ω) the slowly-
and the fast-varying parts can be separately diagonalized.

The “quasi-stationary” slow-solution part of the Schrödinger equation leads just
to a different picture of the Breit-Rabi energy eigenstates (as functions of B0 or,
equivalently, x, or t), which follow a linear dependence, making the states cross at
just the field corresponding to the particular transition frequency. With the RF field
B1 switched on, the q.m. calculation including this perturbation leads to (in this
representation)

• up and down shifts of the eigenvalues (“level repulsion”) and to
• non-diagonal terms of the Hamiltonian matrix, i.e. mixing of states and therefore

transitions between them.

Figure 16.25 shows this schematically. These effects are strongest at the crossing
points, and the efficiency of the transitions is governed by the degree of adiabaticity,
i.e. whether the occupation of the initial states involved will stay on its original
levels (non-adiabatic or “diabatic” transitions, see also Sect. 16.7.3) or undergo a
more or less complete transition to the other level. The strength of the RF field B1
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Fig. 16.25 Schematic q.m. representation of two Zeeman hyperfine states (a) and (b) as functions
of the external static magnetic gradient field B0 without perturbing RF field B1: states crossing
(solid lines) and with perturbation: mixing, repulsion of states, and more or less transition between
them (dashed lines)

is one determining factor. In order to quantify this degree an adiabaticity parameter
was derived from the adiabaticity condition

κ = μJ B2
1

2�Ḃ0
, (16.14)

leading to the transition probability

P = exp(−πκ). (16.15)

The formalism is applicable to two-state strong-field as well as medium-field tran-
sitions.

Detailed information about the RF transitions is obtained by the solution of the
time-dependent Schrödinger equation, in the case of multiple transitions like the
WFT by a set of 2mF + 1 coupled, time-dependent equations. Figure 16.26 shows
an example.

Experimentally as well as in theoretical studies differences in occupation num-
bers and therefore polarizations have been found to depend on the sign of the gradi-
ent of the static field B because Zeeman HFS states are not exactly equidistant and
therefore the several transitions between Zeeman-HFS states did not occur simulta-
neously but sequentially, but in different order.

For the WFT being π transitions the direction of the RF field B1 is along the
beam axis (z direction) and perpendicular to the static field B0. Due to the low fre-
quency required it is realized by a coil with a small number of windings (e.g. about
5–10 for frequencies of 8 to 12 MHz).

Medium-Field Transitions (MFT) Like the SFT the MFT are transitions be-
tween single states. They are, however, π transitions occurring at rather low B0.
Typical transitions are between states 1↔ 2 and 2↔ 3 for H and 1↔ 2, 2↔ 3,
3↔ 4, and 5↔ 6 for D.

Strong-Field Transitions (SFT) Strong-field transitions take place at values of
x ≈ 1. There, at fixed magnetic field and frequency only transitions between single
Zeeman states are possible. The transitions are π or σ transitions. Typical transitions
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Fig. 16.26 Plot of the change of occupation numbers of Zeeman hyperfine states of deuterium
starting with state 1 occupied only, through the WFT region. Upper plots are for negative, lower
for positive field gradient. Left: |B1| = 0.05 mT; right: |B1| = 0.2 mT

are 1↔ 4 for H, 2↔ 6, and 3↔ 5 for D. For these, being π transitions, the field di-
rection of B1 is parallel to the static field B0. The higher frequencies require single-
loop or, more modern, RF-cavity designs.

16.6 Ionizers

In order to convert polarized atomic beams into polarized ion beams a number of
different schemes have been developed:

• Electron-bombardment ionizers
• ECR ionizers
• Colliding-beams ionizers

16.6.1 Ionizers—Electron-Bombardment and Colliding-Beams
Designs

Electron Bombardment Ionizers The cross section for ionization of hydrogen
by electron impact has a maximum near Ee = 70 eV, see Refs. [FIT58, KIE66].
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Fig. 16.27 Cross section of ionization by electron impact of atomic hydrogen with a maximum
near 70 eV

Figure 16.27 shows the results of several authors. The classical strong-field ionizer
makes use of a long ionization path by three measures:

• Spiraling of the electrons, emitted by a cathode wire and accelerated by a positive
grid or ring electrode, along a strong magnetic field of >0.1 T.

• Long ionization volume.
• Multiple use of electrons by reflection from a repulsive electric field at the end of

the volume, serving at the same time as extraction field for the ions.

The electron space-charge depression has to be compensated by injecting the elec-
trons at voltages much higher than 70 eV. The prototype of this ionizer was de-
veloped by Glavish [GLA68] and has been used in many positive-ion sources, see
Fig. 16.28. When negative ions were required—such as for tandem Van-de-Graaff
accelerators—an additional charge exchange in alkali vapor had to follow.

ECR Ionizers The high ionization efficiency of electron-cyclotron-resonance ion-
izers was exploited in some polarized-ion sources. The ECR principle is to ionize
the polarized beam by electrons accelerated in a plasma created by an intense RF
discharge in a strong magnetic field. The RF frequency corresponds to the electron-
cyclotron resonance and is therefore coupled to the magnetic field. At the magnetic
field of >100 mT optimal RF frequencies around 3.8 GHz are necessary with an
RF power up to several 100 W. The fields are shaped to confine the electrons to the
ionizing region and to extract the ions efficiently and without depolarization. The
plasma discharge has to be maintained stably at rather low pressures <1 ·10−6 mbar,
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Fig. 16.28 Scheme of a
Glavish-type
electron-bombardment
ionizer

Fig. 16.29 Cross sections for
ionization of H or D into
positive or negative ions by
charged H (or D), neutral Cs,
and electron beams

which has been achieved by bleeding inert gas like N2 into the discharge volume.
One advantage of ECR ionizers is their small beam emittance. Ionization efficien-
cies of up to 6 · 10−3 have been reported.

Colliding-Beams Ionizers, CBS This type of source was proposed and realized
by Haeberli et al. [HAE68, HAE82]. The very high cross sections for ionization of
atomic hydrogen/deuterium into negative ions in collisions with neutral Cs beams
appeared very attractive. Even more attractive is the ionization of the polarized ther-
mal atomic beams by intense colliding beams of negative or positive unpolarized
ions. This is because the cross sections are larger by about two orders of magnitude
at very low energies due to resonant charge exchange. In Fig. 16.29 the relevant
cross sections are compared. The CBS with Cs requires an energetic Cs beam of
about 45 keV, as shown in Fig. 16.30 with the charge-exchange cross section into
negative ions as function of Cs-beam and relative energies. Cs+ ion beams with
currents of many mA (up to 15 mA) are extracted from a hot tungsten surface ion-
izer button with about 45 keV energy, then neutralized efficiently in Cs vapor. Due
to the high current density nearly complete space-charge neutralization takes place
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Fig. 16.30 Cross section for
ionization of H or D into
negative ions by a neutral Cs
beam. From Ref. [GIE86]

Fig. 16.31 Example of a
1 mA Cs+ beam emitted from
the hot tungsten cathode on
the right and exciting
residual-gas atoms to
fluorescence while exiting to
the left

thus allowing beams of very high brilliance to reach the charge-exchange cell, see
e.g. Fig. 16.31. Such colliding-beams sources were successfully built at Madison,
Brookhaven, Seattle, and, finally, for COSY-Jülich. Figure 16.32 shows the princi-
pal design of a CBS. Essential features of the CBS are high polarization, reliability
and long-time running capability.

The use of resonance ionization by low-energy, but high-intensity beams of
H−,D−,H+, or D+ meets the difficulty of high space charge that so far restricts
the realization only as pulsed systems with very short pulses (µs). Plasma ionizers
with very high ionization efficiencies have been developed. Though very high peak
pulse currents (up to 50 mA) have been reached the average number of polarized
particles per unit time remains relatively small. The CBS with Cs is in principle a
DC source, but in connection with pulsed accelerators such as COSY/Jülich with
long (20 ms) pulses the performance is much improved by pulsing the entire source,
i.e. the polarized atomic as well as the Cs beam synchronously.
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Fig. 16.32 Scheme of a colliding-beams polarized ion source

16.6.2 Sources for Polarized 6,7Li and 23Na Beams

In the past atomic-beam polarized ion sources for
−−→
6,7Li (I = 1 and 3/2) and

−−→
23Na

(I = 3/2) beams have been developed. In the Spin-3/2 cases the complete descrip-
tion of the polarization requires tensor moments tkq up to rank k = 3.

The techniques of producing the atomic beams are different from the hydrogen
case: atoms are evaporated from an oven and ionization can be done by surface
ionization on heated W metal. In the first such sources Stern-Gerlach separation
magnets have been used for spin-state separation.

16.6.3 Optically Pumped Polarized Ion Sources (OPPIS)

The principle used here is the same as that of polarized targets applying the optical
pumping of alkali vapors (especially rubidium) and transfer of the high electronic
polarization by collisions to the ground-state atoms and nuclei of H or D (spin-
exchange method SEOP). The relevant wavelength (795 nm) is in the near infrared
and pumping can be done by different lasers (e.g. Ti:Sapphire), but high-power laser
diodes (diode arrays) have recently become available and are most convenient. Fig-
ure 16.33 shows a schematic of the principal functions of an OPPIS. Different func-
tions such as neutralization of the injected H+ beam, optical pumping of Rb, and
spin-exchange collisions occur in an integral vessel in a common magnetic field
region.
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Fig. 16.33 Scheme showing the principles of optically pumped polarized-ion sources

A source of this type, using the charge-exchange reaction

H0 +He→H+ +He+ e (16.16)

for positive ion output, developed originally at TRIUMF/Vanvouver, is being used
at the RHIC accelerator at BNL/Brookhaven. It has superior properties: ionization
efficiency up to 0.8, DC

−→
H − currents of up to 15 mA (pulsed about 25 mA) at high

polarizations.
The polarized jet target used at RHIC is in principle a classical ABS. It has

the highest polarized atomic-beam intensity achieved so far (≈1.2 s−1) [ZEL05,
WIS06]. Another recent polarized jet target based on an ABS is the ANKE target at
COSY-Jülich (for a detailed account see Ref. [MIK13]).

16.7 Physics of the Lambshift Source LSS

16.7.1 The Lamb Shift

Although Lamb-shift sources are not at the forefront any more they have been used
for decades and rely on interesting physics. The Lambshift, relevant here, is the en-
ergy difference between the 2S 1

2
and the 2P 1

2
states [LAM50] of H or D atoms and

is explained only by quantum electrodynamics. For hydrogen this shift (without a
magnetic field) is about 1057 MHz or 4.38 · 10−6 eV. The lifetime for the transition
2S 1

2
− 2P 1

2
, due to the very small energy difference, is about 20 years. A dipole

transition (E1) to the 1S1/2 ground state is forbidden (I = 0→ I = 0), as is the cor-
responding quadrupole transition (E2) (J = 0→ J = 0). A magnetic dipole transi-
tion (M1) is allowed and its lifetime was calculated to be about two days (Breit and
Teller [BRE40]). The main contribution comes from a two-quantum transition with
τ ≈ 1

7 s. An electric field reduces the lifetime of the 2S 1
2

and increases that of the
2P 1

2
state via the Stark effect, which mixes states of different parity (i.e. here the
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parity is not a good quantum number). Following Lamb and Retherford [LAM50]
the lifetime of the 2S state is

τS
∼= τP

�
2(ω2 + γ 2

4 )

|V |2 (16.17)

with

τP = lifetime of the P state= 1.595 · 10−9 s (16.18)

�ω =�E

= energy separation between S and P state (field dependent). (16.19)

γ = 1/τP (16.20)

V = 〈ϕS |eEr|ϕP 〉
= matrix element of the dipole transition (16.21)

which, for small electric fields, (≤100 V/cm) is approximately

τS = τP (475/E)2. (16.22)

16.7.2 Level Crossings and Quench Effect

In the picture of the fine structure (FS) the Stark effect mixes states with �mJ = 1,
�π =+, i.e. (in the historical nomenclature of Lamb and Retherford [LAM50]) the
states α and f , β and e, respectively. Because the states β and e cross at a mag-
netic field of about 57.5 mT, the transition probability there becomes maximal. The
lifetime of β becomes shorter with smaller �E (the transition probability (pertur-
bation calculation!) contains (�E)2 in the denominator). τS(α) increases with B

because of increasing state separation, while τS(β) has a minimum near 57.5 mT.
The lifetime of the S state is empirically given by the formula:

τS = 1.13

E2

[
(574±B)2 + 716

]
ns. (16.23)

For E = 15 V/cm one obtains e.g. τS(α)/τS(β)= 1850. For a hydrogen beam with
500 eV (or 3.1 · 107 cm/s) practically all atoms have decayed into the state β after
6.5 cm, but only 3.5 % of the α states (see Fig. 16.34). In this way an atomic beam
is obtained that is about 96 % polarized in the electronic spin. The HFS Zeeman
splitting leads to four (or nine, resp.) crossings around 57.5 mT, of which two (for
H) or three (for D) can undergo Stark-effect quenching (see also Fig. 16.41). If the
beam is (adiabatically) transported and ionized in a weak magnetic field a nuclear
polarization of half of the theoretical value of the electronic polarization (and a
correspondingly polarized proton or deuteron beam) results.
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Fig. 16.34 Lifetimes of the n= 2 Zeeman states as functions of the magnetic field for two electric
quenching field strengths

16.7.3 Enhancement of Polarization

There are two ways to enhance and change the nuclear polarization in the metastable
beam. One is the use of a non-adiabatic (fast) transition with a change of the occu-
pation of the Zeeman states, the SONA transition scheme [SON67]. The other is
the use of a spinfilter [KIB68], in which a combination of a longitudinal magnetic
field, a transverse static electric field and an RF field allow the selective transmis-
sion of single HFS states. These methods result in polarization values close to the
theoretical maxima.

Figure 16.35 depicts the Breit-Rabi diagrams for H and D with a sudden field
reversal via a zero-crossing. Depending on the degree of adiabaticity of the cross-
ing, the occupation of the Zeeman states follows different “trajectories” on the
Zeeman levels (see Sect. 16.5.4). The practical realization of the LSS will be ad-
dressed below. The LSS with SONA transitions can be run in several different
modes, e.g. with one or two quenching processes (the latter for deuterium). The
resulting polarizations of a beam can be calculated from the occupation numbers of
the remaining Zeeman states and depend on the magnetic field. Figure 16.36 shows
different modes of operation of the LSS with one (for vector polarization of pro-
tons or deuterons) or two quenching processes (for deuteron tensor polarization).
Figures 16.37 and 16.38 show the dependence of the proton or deuteron polariza-
tions on the magnetic field at the ionizer location.

Production of the Beam of Metastables H and D atoms in the 2S state may be
produced by electron impact, but the charge-exchange reaction

H+ +Cs0→H0(1S,2S)+Cs+ +Q (16.24)
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Fig. 16.35 Zeeman levels of
hydrogen and deuterium with
(non-adiabatic) zero-field
crossing/field inversion

is much more efficient. The primary positive ion beam is produced in a standard ion-
source system such as an RF discharge, a duoplasmatron or even ECR ion source,
see Sect. 16.4.1. The required fixed energy of the ions of 500 eV for H+ or 1 keV
for D+ and therefore relatively high space-charge limit the beam current that can
be injected into a charge-exchange cell containing Cs vapor of appropriate density.
Figure 16.39 shows the charge-exchange cross sections to the neutral ground and
to the metastable 2S states as functions of the energy, and the relative yields as
functions of the Cs target thickness. For Cs Q= 0.50 eV, and the ionization energy
of 3.89 eV is very small. The yield is 10–15 % at 500 eV for a target thickness of
5 · 10−3 Torr cm. The measured fraction of metastables in the full beam of neutral
particles (1S,2S) amounted to fmax = 0.430±0.03. It is serendipitous that the cross
sections for metastable production and selective ionization in argon (see below) have
maxima at about the same beam velocity. The positive beam into the Cs-vapor cell
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Fig. 16.36 Different SONA
modes of operation of the
LSS for H (top) and D
(bottom)

Fig. 16.37 Proton
polarization as function of the
ionizer field after one quench

is produced either by a conventional RF ion source or by a duoplasmatron, see the
preceding Sect. 16.4.1.

16.7.4 Production and Maximization of the Beam Polarization

In order to obtain maximum values of the polarization with a LSS, in analogy to
the ABS transitions between hyperfine states are induced. However, because the
(metastable) beam, in comparison to the ground-state atomic beam, is “fast”, none
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Fig. 16.38 Deuteron vector
and tensor polarization as
functions of the ionizer field
with one (1) or two (2)
quench processes

of the usual adiabatic RF transitions can be used, but either non-adiabatic transitions
(SONA transitions) or a SPINFILTER. This leads to two possible schemes for the
construction of the LSS, depicted in Fig. 16.40.

SONA Transition The idea is to perform a non-adiabatic transition in a “rapidly”
sign-changing magnetic field (zero crossing) [SON67], i.e. the field changes in time
intervals short against 1/νL = 2π/ωL, from which the condition

1/B(dB/dt)� ωL/2π = (γ /2π)B, (16.25)

i.e.

dB/dt � (γ /2π)B2 (16.26)

is derived. In this case the atoms stay in their respective Zeeman HFS states while
the field is reversed, see also Fig. 16.25 and the discussion there. Thus the original
state 1 becomes state 1′ ≡ 4, leading to a theoretical nuclear polarization of 100 %
instead of 50 %. There is a critical volume: The non-adiabaticity condition is always
fulfilled for B = 0, i.e. on the beam axis as long as the field has a gradient at all.
Away from the beam axis the field can only be �= 0. Therefore, there is a critical
beam radius, beyond which this condition is not fulfilled.

Spin Filter The theory of the spin filter [OHL67, KIB68] is somewhat compli-
cated because its function rests on the simultaneous interaction of three states:

• The 1S0 ground state,
• the metastable 2S1/2 state, and
• the short-lived 2P1/2 state.

The Breit-Rabi diagram Fig. 16.41 illustrates (for H) the simultaneous interactions.
Near the level crossings the β states are quenched, i.e. decay rapidly into the 1S

ground state. The RF transition depopulates the substate α2 while the substate α1
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Fig. 16.39 Charge-exchange cross sections of protons in Cs vapor into the metastable 2S state and
the 2P state as functions of the energy (left) and relative contributions in the beam after passage
through Cs vapor as functions of the areal thickness of Cs (right). Adapted from Ref. [PRA74]

Fig. 16.40 Realization of the LSS with two principles: SONA method (upper) and SPINFILTER
(lower). Negative as well as positive ions can be obtained

is constantly repopulated from one β substate. After exiting the spin filter only one
hyperfine substate remains populated. The choice of the magnetic field value at fixed
RF frequency (or vice versa) determines, which state is being transmitted. For deu-
terium the interactions are analogous. The interactions are realized by the static
longitudinal magnetic field of a solenoid of about 57.5 mT, which must be quite ho-
mogeneous, a static electric quenching field realized by segmenting the RF cavity
into quadrants and applying a DC voltage to an opposing quadrant pair, and an elec-
tric RF field with a frequency of ν = 1.60975 GHz in the TM010 mode in a resonator
cavity. The spin-filter setup is illustrated in Fig. 16.42. The spin-filter principle has
advantages over the SONA principle, at least for deuterium. They derive from the
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Fig. 16.41 2S/2P hydrogen
hyperfine-Zeeman states
diagram with transitions
caused by the static and the
RF electric fields

fact that single hyperfine components can be selected and transmitted whereas the
usual SONA scheme transmits two states. Therefore, only with the spin filter the
theoretical maximum values of the polarization between pZZ =+1 and −2 can be
obtained together with the possibility to change the sign of the polarization. On the
other hand the intensity is reduced, as compared to the SONA scheme. Therefore,
the figure of merit p2 · I has to be evaluated for each scheme, and in general, the use
of a spin filter may not be useful for protons, also in view of the simpler operation
of the SONA scheme, whereas for the deuteron tensor polarization a doubling of the
figure of merit was proven experimentally.

The function of a spin filter is illustrated by Fig. 16.43, which shows the polar-
ization and the transmitted intensity (current) of the deuterons as functions of the
spin-filter magnetic field keeping the E field and the RF frequency constant.

Selective Ionization of the (Polarized) Beam of Metastables This is achieved
by a quasi-resonant charge-exchange process

H(2S)+Ar→H− +Ar+. (16.27)

A similar charge exchange leads to positive polarized ions [KNU70, BRU70]

H(2S)+ I2→H+ + I−2 . (16.28)

Figure 16.44 shows the high value and weakly resonant behavior of the cross sec-
tion σ2S− for negative-ion formation from metastables as compared to σ1S− from
ground-state atoms (left). The right part of the figure shows the strongly energy-
dependent (relative) H− ionization yields of these processes, especially the high
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Fig. 16.42 Scheme of a spin filter with the relevant fields and photographs

Fig. 16.43 Transmitted
current and polarization of
the deuteron hyperfine
components appearing at
three different values of the
spin-filter magnetic field B .
Data measured with the
Cologne LSS and the FN
tandem VdG accelerator

selectivity of the metastable relative to the ground state. For the 2S state an ioniza-
tion energy of at least 10.19 + 0.75 = 10.94 eV (i.e. the excitation energy of the
2S state plus the binding energy B.E. of the electron in H−) is required. Argon has
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Fig. 16.44 Electron capture cross sections σ1S− and σ2S− on argon for ground-state and
metastable H atoms as functions of the energy, adapted from Roussel [ROU77] (left) and
H+ → H− charge-exchange yield (through the entire system of the Lambshift source) of ground-
state and metastable H atoms on argon, adapted from Donnally and Sawyer [DON65] (right)

an ionization energy of 15.8 eV and is therefore especially suited. The selectivity
2S/1S is almost 100 %, the ionization yield is near 1 %. In practice, like always
in polarization work, all source parameters must be optimized with respect to the
maximum figure of merit p2 · I .

The final limitations of the LSS are at least twofold. They consist in the necessity
of working at given low energies for the production of metastables, which limits the
current of H+/D+ ions that can be injected into the Cs charge-exchange region due
to space charge.

Another limiting factor is the relativistic quenching by the electric field �E =
γ �v × �B generated by the fast motion of the metastables in magnetic fields such as
the SONA fields.

16.8 Spin Rotation in Beamlines and Precession in a Wien Filter

Each polarization facility must—in addition to simple beam management—take
care of the spin behavior during beam transport. The polarization at the source
and/or in the beamline must be prepared such that the absolute value of the polar-
ization as well as its orientation in space can be optimized, the latter freely chosen.
The direction of the polarization vector coincides with the direction of the principal
axis of the polarization tensor (for deuterons).
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16.8.1 Spin Rotation in Beamlines

Normally the beamlines contain deflection magnets and electric deflection fields.
The latter do not influence the direction of the polarization in a space-fixed coordi-
nate system, but of course the angle between the polarization vector and the direction
of motion of the beam may change. In magnetic fields (such as from analyzing and
switching magnets) the spin polarization precesses except when �p is parallel to �B .

• The precession of a nuclear spin �I in a magnetic field can be described by the
classical relation between the torque �M and angular momentum �M = �μ× �B =
gIμN

1
�
( �I × �B) and �M = d �I

dt
:

d �I
dt
= q

2m
gI · ( �I × �B)= gI ·μN

1

�
· ( �I × �B). (16.29)

For a particle with spin �I , mass m, and charge q (mp = proton mass)

gI = m

mp

· e
q
· gLandé. (16.30)

(The gLandé factors are fundamental constants of particles and measure the de-
viation from point-particle behavior, i.e. hint at internal structures of nuclei and
nucleons or at QED corrections to the interaction of leptons with external fields).
d �I/dt is oriented perpendicular to �I , i.e. only the direction but not the absolute
value of �I changes. Likewise, d �I/dt is perpendicular to �B and the spin precesses
around �B . The Larmor precession period T is given by

2π

T
=
∣∣∣∣d
�I

dt

∣∣∣∣ 1

| �I | sinφ
= gI ·μN

1

�
| �I || �B| sinφ

1

| �I | sinφ
. (16.31)

The rate of precession is thus independent of the angle between the spin and the
magnetic field and occurs with the circular Larmor frequency

ωL = gIμNB

�
(16.32)

with the nuclear magneton

μN = e�

2mp

= 5.05 · 10−27 J/T. (16.33)

• The Landé g factors for the proton and deuteron are: gp = 5.586 and gd = 0.857.
• The magnetic moments of the proton, the deuteron, and triton are positive. There-

fore, for a positive beam (such as on the high-energy side of a tandem Van-de-
Graaff accelerator) the sense of spin rotation in these cases is the same as that of
the magnetic deflection. For the polarized beams from negative-ion sources the
opposite is true, which also has to be taken into account in Wien filters that have
been used as spin-rotation devices without beam deflection.
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• The spin Larmor precession and the deflection in magnetic fields, which is de-
scribed by a cyclotron motion with ωC = (q/m)B , are proportional to each other
and coupled together. The change of the polarization direction relative to the beam
is the difference between the angles of precession and of deflection.

• The preparation and change of the polarization from the source to the target is
preferably described in a beam-fixed coordinate system with a y axis vertical
in space, a z axis attached to the beam direction (which may change in beam-
deflection devices) and the x axis forming a right-handed system with both. An
azimuthal angle φ of the polarization vector is counted starting from the x axis.

• In a deflection magnet (with B field in y direction) the precession occurs in the
x–z plane and the change of the spin polar angle �β (measured from the z axis)
with fixed azimuthal angle φ is (for positive beams) is:

�β =�θL −�θC =
(

g
m

2mp

− 1

)
�θC, (16.34)

i.e. for protons

�β = 1.793 ·�θC, (16.35)

for deuterons

�β =−0.143 ·�θC, (16.36)

and for negative beams

�β =−�θL −�θC =
(
−g

m

2mp

− 1

)
�θC. (16.37)

16.8.2 Spin Rotation in a Wien Filter

For the setting of the polarization at the source a Wien (velocity) filter that is ro-
tatable around the beam axis on the source is especially suited. With the ion beam
of velocity �v in z direction, an electric field �E in x, and a magnetic field �B in y

direction the filter transmits ions fulfilling the condition

v = E

B
(16.38)

for an ideal reference beam, i.e. one on the central z axis. For an extended beam
with finite emittance (i.e. with particles having transverse momentum components)
the above condition cannot be fulfilled for all particles simultaneously. This results
in some (small) spreading of final spin directions in the beam, i.e. depolarization.
This effect can be reduced by having a beam cross-over in the center of the device.

The changes of the spin orientation by deflecting fields and precession in a Wien
filter are generally described by three Euler angles. However, the direction of a spin
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vector is completely determined by two parameters, i.e. in polar coordinates a polar
angle β and an azimuthal angle φ, see also Sect. 5.4.3. Thus, one Euler angle is
redundant (i.e. can only enter as a phase factor) and the other two are uniquely
connected with β and φ. The description of the quantum-mechanical rotation of
spinors via action of rotation matrices on spin operators (such as represented by
Pauli matrices) is entirely equivalent to a classical 3× 3 rotation matrix acting on
angular momentum (spin) vectors.

If we describe the orientation of a spin unit vector in the beam-fixed coordinate
system x, y, and z defined above, by polar coordinates

Ŝ =
⎛
⎝ sinβ cosφ

sinβ sinφ

cosβ

⎞
⎠ (16.39)

then after a general rotation by polar and azimuthal angles α and ψ we have

⎛
⎝ Ŝx′

Ŝy′
Ŝz′

⎞
⎠ =

⎛
⎝ sinβ ′ cosφ′

sinβ ′ sinφ′
cosβ ′

⎞
⎠

=
⎛
⎝cosα cosψ cosα sinψ sinα

− sinψ cosψ 0
sinα cosψ sinα sinψ cosα

⎞
⎠ ·

⎛
⎝ sinβ cosφ

sinβ sinφ

cosβ

⎞
⎠ . (16.40)

For an accelerator system where all rotations occur around the y axis, i.e. where
ψ = 0, the rotation matrix simplifies to

⎛
⎝ cosα 0 sinα

0 1 0
− sinα 0 cosα

⎞
⎠ . (16.41)

By applying the inverse of this matrix
⎛
⎝cosα 0 − sinα

0 1 0
sinα 0 cosα

⎞
⎠ (16.42)

to a desired arbitrary spin orientation at the target the necessary setting of the Wien
filter magnetic field and azimuthal orientation can be calculated. Under the action
of a vertical field B of length L along z the spin (polarization) vector of the parti-
cles precesses in the x–z plane by a polar angle proportional to |B| and inversely
proportional to v

βprec = gIμN

�

(B ·L)eff

v
. (16.43)

In the general case the azimuthal orientation of the field �B determines the az-
imuthal angle of the polarization around the z axis. The Wien filter �E field strength
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Fig. 16.45 Precession curves
of the polarization (values
were normalized to 100 %) as
functions of the current of the
Wien-filter magnetic field
(the corresponding electric
field is then fixed for a given
particle velocity and is found
by maximum beam
transmission). (a) Vector
polarization of protons, (b)
Tensor polarization of
deuterons, (c) Vector
polarization of deuterons.
Measurements were
performed with the Cologne
LSS at the FN tandem VdG
accelerator

is adjusted for maximum transmission of the polarized beam. At the same time the
device acts as a velocity filter (and mass filter for ions of the same energy). Any
desired spin orientation at the target position may be achieved.

Figure 16.45 shows precession curves of the vector polarization of protons and
deuterons as well as of the tensor polarization of the deuterons. The polarizations
were measured with polarimeters using the reactions 3He(d,p)4He, 4He(p,p)4He,
and 4He(d, d)4He after the acceleration by a tandem Van-de-Graaff accelerator and
display the variation of the polar angle β of the polarization.

16.9 Exercises

16.1. In an old-fashioned tandem Van-de-Graaff accelerator the terminal electrode
is a cylinder with a diameter of 0.8 m that is charged by the electric charges
transported to its inner surface by a rubber-like belt. The accelerating structure
is concentrically surrounded by a cylindrical pressure vessel of 3.5 m diameter
filled with an insulating gas such as SF6,CO2,N2 or a mixture of them, at
several bar pressure. The breakthrough electric field strength is Emax = 1.7 ·
107 V/m.

(a) How high is the breakthrough terminal voltage?
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(b) What is the current that the belt (width: 60 cm) can transport if it is run-
ning with a velocity of 55 km/h and has the same surface breakthrough
field strength of Emax = 1.7 · 107 V/m?

16.2. Find out about the average neutron separation energy for medium-heavy nu-
clei. Above which terminal voltage of a tandem VdG accelerator radiation
shielding against neutrons must be in effect? If you had to provide shielding
around an experimental setup, how would you proceed? How about γ radia-
tion? Why are heavy-ion reactions less dangerous than proton reactions, and
why are deuteron-induced reactions especially dangerous?

16.3. Which energy is required to pass the Coulomb threshold of the scattering of
the identical particles 12C on 12C?

16.4. Which terminal voltage of a tandem Van-de-Graaff accelerator is necessary if
the (in view of high beam intensity) favorable 3+ charge state is to be used?

16.5. Accelerators must be calibrated to deliver beams with precisely known en-
ergies. Normally secondary standards are used which rely on some high-
precision measurements. An example is using sharp resonances such as the
isospin-forbidden state in 13N, see Sect. 3.3.2. In order to check the linear-
ity of the calibration and the “differential hysteresis” (calibration differences
between energy changes up or down) other calibration points have to be es-
tablished.

(a) For a VdG accelerator, threshold reactions may be used (requiring neutron
detection and count-rate extrapolation to the thresholds) such as the (p,n)

reactions on 13C, 19F, 27Al, and 65Cu. Using mass tables, find the proton
lab. threshold energies.

(b) The energy resolution of a beam from a tandem VdG accelerator can
be determined by measuring the broadening of a narrow resonance with
known width. An example is discussed in Sect. 3.3.2 and Fig. 3.4. Justify
the form of the relation between the experimental resonance width Γexp,
the accelerator’s energy resolution ΓBeam, the possible energy straggling
in the target ΓTarget, and the true width of the resonance ΓRes

Γ 2
exp = Γ 2

Beam + Γ 2
Target + Γ 2

Res. (16.44)

Calculate the beam resolution by assuming that it is entirely determined
by the energy-defining slits behind the 90◦ analyzing magnet. Assume
e.g. a proton beam energy of 14 MeV, a distance from magnet to slit of
3 m, and a slit width of ±0.5 mm.

16.6. A classical cyclotron is to accelerate protons to 45 MeV. How large is the
minimum diameter of the homogeneous magnetic field if the maximum field
strength is B = 1 T?

16.7. A tandem VdG accelerator reaches a maximum terminal voltage of 11 MeV.

(a) What energy (in MeV) can be obtained for a beam of 32S in the 4+ charge
state?
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(b) In order to deflect such a beam in a 90◦ analyzing magnet (which is used
to determine and stabilize the beam energy via a pair of analyzer slits con-
nected to a differential amplifier circuit) a homogeneous magnetic field B

acting over a path length L is required. How high is B if L= 1.8 m?
(c) A Wien filter (also: velocity filter) consists of an electrical field Ex cross-

ing a magnetic field By under 90◦, both perpendicular to the direction z

of a passing charged-particle beam. What would be the value of B for the
above sulfur beam, if E has the (realistic) value of 2 kV/m?

(d) Can the Wien filter be used to separate masses?

16.8. Calculate the deflection of a 1H atom of thermal (room temperature) velocity
in a magnetic dipole field with the constant gradient of dB/dz= 1 T/cm over
a length of 20 cm at a distance from the magnet exit of d = 50 cm

(a) due to the electron’s magnetic moment?
(b) due to the nuclear magnetic moment?
(c) For both cases: If we assume a Maxwell-Boltzmann velocity distribution

in the beam (this is not quite realistic!), how do the separations achieved
relate to the beam-spot widths (FWHM) in view of creating highly polar-
ized partial beams? What, if the beam “temperature” were 4 K?
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Chapter 17
Detectors, Spectrometers, and Electronics

Nuclear radiation cannot be felt nor seen. Already W.C. Röntgen detected X-rays by
noticing effects on photographic material wrapped densely in black paper. Ruther-
ford relied on seeing tiny flashes of light when α’s impinged on a screen of ZnS,
which was the beginning of scintillation detectors using phototubes with secondary-
electron multipliers. Hess in 1912 detected cosmic rays by measuring the depen-
dence of ionization in air as function of the height above ground in an electrom-
eter. The nature of cosmic rays was then revealed by tracks in ionization cham-
bers and stacks of photoplates. Finally Geiger and Müller developed the ionization
chamber into the proportional counter and the Geiger-Müller counter. From these
“ionization” detectors a number of modern high-energy detectors such as TPC’s
(time projection chambers) emerged. “Visual” detectors such as photoplates or Wil-
son’s cloud chamber, and later the spark chamber and the famous bubble cham-
ber not only led to important discoveries such as the positron or the particles with
strangeness, but helped to convince the public of the “reality” of radiation. An enor-
mous push was provided by developments in solid-state physics leading to compact
Si detectors mainly for charged particles and efficient large Ge detectors mainly
for the detection of γ rays. Due to their nature neutrons require more complicated
detection schemes.

These detector developments cannot be discussed here in detail, and there-
fore only the principles of modern detector types widely used in nuclear physics
will be explained here. For more details see the widely accepted books by Sieg-
bahn [SIE68], Knoll [KNO10], and Leo [LEO94].

17.1 Ionization Chambers

Already the decay of charge in an electrometer indicated ionizing radiation. First
quantitative measurements were made possible by measuring the weak electric pulse
induced in the circuit connected to the electrodes containing the ionizing region.
Using a thin wire as one electrode, where the high electric field leads to gas multi-
plication of charge carriers, thus forming an avalanche, resulted in much increased
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DOI 10.1007/978-3-642-53986-2_17, © Springer-Verlag Berlin Heidelberg 2014

301

http://dx.doi.org/10.1007/978-3-642-53986-2_17


302 17 Detectors, Spectrometers, and Electronics

Fig. 17.1 Typical
scintillation detector setup.
Voltages up to a few kV are
applied to the cathode
(sometimes to the anode) and
output pulses in the volt range
may be registered

sensitivity of the counting tube. This device can be used basically in two modes
depending on the applied voltage: At lower voltages the magnitude of the electric
pulse is proportional to the energy deposited by the ionizing particle (Proportional
counter). At higher voltages a discharge develops that has to be stopped either elec-
tronically or by adding a quenching gas such as CO2. This mode (Geiger-Müller
counter) registers “events” with high sensitivity and is used in radiation monitors.
These detection principles have been developed into a number of modern detectors,
especially in medium and high-energy applications, and where position sensitiv-
ity over wide areas is required (e.g. the multi-wire proportional chamber MWPC).
A typical application is that as a detector in the focal plane of a magnetic spectro-
graph in low- and medium-energy nuclear physics, see Sect. 17.3.3.

17.2 Scintillation Detectors

Figure 17.1 depicts a typical scintillation detector setup consisting of a scintilla-
tor (inorganic or organic solid, liquid, or gas) suitable for different applications, a
photocathode producing electrons from scintillator light, a photomultiplier tube con-
sisting of a chain of electrodes, on which secondary-electron multiplication occurs,
and a network to apply a high voltage to the cathode and at the same time to collect
the output electron pulse for each event.
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Fig. 17.2 Basic principle of sold-state detectors. By joining a p-type and an n-type semiconduc-
tor material a depletion layer is formed by charge-carrier diffusion (upper frame). By applying a
voltage across the junction this layer becomes smaller or wider depending on polarity (second and
third frames). In one case a conduction current flows, in the other there is only a very small reverse
current but basically an insulating depletion layer is formed, in which charges from an ionizing nu-
clear particle are collected by the electric field existing across the layer. The lowest frame shows the
situation without external voltage in the band-structure model of the two semiconductors. Applied
voltages would either move the two bands (the conduction and the valence band) closer together
or away from each other. Some doping reduces the gap that has to be “crossed” by the energy of
the ionizing particles

17.3 Solid-State Detectors

For charged as well as for γ particles the development of solid-state technologies
has brought enormous progress. It is mainly the compact size, but also the excellent
energy resolution of these detectors, which led to their universal use in low-energy
nuclear physics. Figure 17.2 illustrates the basic principle of such devices, i.e. that
of a reversed-bias p-n junction, in which the electric field across a depletion layer
with its very low electric conductivity allows the quantitative collection of electron-
hole pairs created by the ionizing particles. The ionization energy, i.e. the energy
to lift an electron from the valence into the conduction band creating an electron-
hole pair is 3.66 eV for Si and 2.5 eV for Ge. Assuming Poisson counting statis-
tics this explains the high resolution possible with semiconductors as compared to
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Fig. 17.3 Scheme and view of a typical surface-barrier detector with the front gold layer electri-
cally connected with the housing as positive electrode

ionization-chamber type gas detectors where �E is ≈30 eV. The very different
physical processes, by which γ radiation and charged particles interact with matter
has led to very different designs of semiconductor detectors for both cases. It has,
however, become customary to use Si detectors mainly for charged-particle spec-
troscopy (sometimes also for high-resolution X-ray detection) and Ge detectors for
γ spectroscopy. Si technology in intermediate and high-energy applications is now
often used for start detectors/triggers in large detector arrays with track reconstruc-
tion etc.

17.3.1 Si Detectors

The most common detector type for charged particles is the surface-barrier Si de-
tector. The doped Si wafer is covered with a thin metal (gold) layer and a very thin
oxide layer in between, thus forming a Schottky p–n diode. The depletion layer is
therefore very asymmetric such that over the entire area of the wafer (a few cm2) the
particles can enter the depletion zone. If the particles are stopped in this depletion
zone the total charge collected is proportional to the energy deposited, and the detec-
tors are 100 % efficient: The number of output pulses is equal to the number of inci-
dent particles, which is important for absolute cross section measurements. There-
fore for an energy measurement the incident particles have to be stopped within the
depletion zone. The depth of the depletion zone goes as

√
UB with UB the bias

voltage. Typical maximum depths are ≈2 mm, in which protons of 20 MeV will
be stopped. Figure 17.3 shows a typical surface-barrier detector of pn-type Si and a
thin gold layer forming the asymmetric depletion layer. The theoretical resolution of
Si detectors e.g. for protons is a few keV. In practical situations such as in an accel-
erator experiment in a scattering chamber with modest cooling of the detectors, with
the usual amplifier chain and with thermal and other noise factors etc., 15 to 20 keV
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Fig. 17.4 Spectra from scattering (polarized) protons of 16 MeV at 160◦ and 140◦ from a thin
207Pb target obtained with two standard surface-barrier detectors. A resolution of about 25 keV
was obtained. The very low background allowed the measurement of the weak transitions to the
first and second excited states of 207Pb corresponding to shell-model hole states of 207Pb [LAT79]

can be obtained. An example is shown in Fig. 17.4. For higher energies stacks of
such detectors may be used or Li drifted Si detectors. A combination of a thin first
detector, in which a small energy amount �E is deposited and a second stopping
detector forming a detector telescope is used for particle identification according to
the Bethe-Bloch formula for the differential energy loss of charged ions of charge z

in matter of charge number Z and their velocity v

−dE

dx
= e4 z2ZNAρ

mev2Au

[
ln

2mev
2

I
− ln

(
1− β2)− β2

]
, (17.1)
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where β = v/c, I ≈ (10 eV) · Z the average ionization potential of the stopping
medium, for which extensive tabulations exist, NA = Avogadro’s number, ρ = the
mass density of the material.

17.3.2 Particle Identification

For unambiguous identification of particles, especially in complex reactions with
many exit channels, as is often the case for heavy-ion reactions, it is necessary (and
sufficient) to know the mass and the charge number Z. Thus, the product of �E

and v2 is ∝Mpz2, the particle’s mass and squared charge, which can be used to
identify it in complicated spectra and to improve the separation of particle species
in high-sensitivity experiments such as AMS spectroscopy, see Sect. 20.1. Mod-
ern methods—in low-, medium-, and especially in high-energy nuclear or particle
physics make use of event-by-event analysis of events. At least two different types
of signals are required: an energy signal E, a �E signal, in addition a third infor-
mation such as a time-of-flight signal help disentangle complex output. Magnetic
deflection can be an additional piece of information on the momentum as well as
the charge sign of the particles (e.g. when antiparticles are involved). Already a
three-particle breakup reaction (see Sect. 9.2.6) in low-energy nuclear physics will
profit from such information. Figure 17.5 gives an account of how for a complicated
breakup reaction event-by-event processing, setting windows and cuts in energy and
time-of-flight spectra can single out one reaction channel and remove background.
In the relatively new field of exploring “exotic” nuclei and measuring their proper-
ties mainly by γ spectroscopy after fusion-evaporation reactions the high number of
exit channels requires efficient means of identifying the final product nuclei by mass,
momentum, and charge. Besides �E and energy/momentum the time-of-flight can
be measured, e.g. by using pulsed incident beams and timing-transmission detec-
tors to trigger and cut event by event in appropriate spectra. An impressive example
is shown in the following Fig. 17.6. In intermediate- and high-energy physics an
almost universal �E detector is the Time Projection Chamber, TPC, allowing not
only particle identification via dE/dx, but also complete 3D tracking of many out-
put events (multiplicities can be many thousands at the LHC). Si detectors have new
and attractive applications in large high-energy detector systems such as the LHC
detectors as start detectors with very good spatial and time resolution.

17.3.3 Magnetic Spectrographs

Another way of obtaining high-resolution charged-particle spectra is using a mag-
netic spectrograph in combination with some position-sensitive detection system.
Precise ion-optical calculations have led to designs that fulfill a number of con-
ditions: besides good energy resolution double focusing (i.e. focusing of particles
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Fig. 17.5 Left: Raw E3/E4
coincidence spectrum of
several reaction channels of
6Li+ p→ dα, pα, pd , αd ,
αp, and dp coincidences. The
six possible, partly
overlapping, kinematical
curves (theoretical curves on
top) are almost invisible.
Successive background
reduction steps are: a cut on
the time peak in the timing
output signal of the
electronics removing
accidental coincidences, a cut
around the kinematical curve
of interest in the energy
spectrum, and a cut on the
time-of-flight difference
(theoretical on top) intensity
distribution of interest,
leading to the pure pα

intensity distribution
(bottom) [NIE86]

emitted under different angles) to ensure constant efficiency across the entire spec-
trum necessary for absolute cross section measurements. The most-used design has
been the Q3D design consisting of one quadrupole and three dipole magnets. For
the MeV energies to be measured especially the magnets are heavy machinery, and
in order to measure angular distributions of reaction products the entire system has
to be easily rotatable around the target, which can be achieved e.g. with air cush-
ions or rail systems. Energy resolutions and absolute energy calibration values in
the low-keV range have been obtained. Figure 17.7 shows the Q3D spectrograph at
the LMU tandem laboratory in Munich.

17.3.4 Ge Detectors

The interactions of γ rays with (detector) matter are governed by “all-or-nothing”
processes, i.e. the photon is either absorbed or scattered (out of a good collimated-
geometry setup) or unaffected, for details see Sect. 17.7. Thus, whereas with charged
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Fig. 17.6 �E vs. time-of-flight spectrum of final neutron-rich nuclei. They were produced by a
100 MeV/A 86Kr beam from the NSCL K500/K1200 cyclotrons, impinging on a Be target and
producing many different radioactive nuclei. These were selected and identified through a system
of a fragment separator, a time-of-flight mass measurement beamline of 58.7 m length, and a
magnetic spectrograph [MAT12]

Fig. 17.7 Scheme with magnets and ion trajectories of the LMU Munich Q3D spectrograph (Cour-
tesy R. Hertenberger, LMU Munich)

particles there are successive small energy losses down to zero energy and subse-
quently a finite range in a detector, for γ ’s there is an exponential decrease of in-
tensity and no finite range but a mean absorption length. The energy is deposited in
secondary particles (electrons and positrons), and in order to collect as much energy
as possible from the photons the detectors have to be as large as possible (this is true
also for γ scintillation detectors).

Historically Ge detectors have been fabricated much in the same way as Si ones:
an asymmetric p–n junction with a large-volume doped region and a thin metal front
contact. With much improved purities of large-volume Ge material (hyper-pure)
Ge (HPGe) crystals that are intrinsically “depleted” without doping or Li drifting
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Table 17.1 Neutron energy classification

Neutron Class Subgroup Energy Range Source

Slow Ultracold (UC) <0.2 µeV

Very Cold 0.2 to 50 µeV

Cold 0.05 to 25 meV Reactor or Spallation Source
+ (Ultra-)Cold Moderator

Thermal ≈0.025 eV Reactor+Moderator

Epithermal 25 meV to 500 keV

Resonance 1 eV to 100 eV

Fast >500 keV Nuclear Reactions

Very Fast >5 · 102 MeV Spallation Sources

have become customary. The latest development are Ge detectors that are position-
sensitive (tracking detectors), providing improved angular resolution. Due to the
nature of γ interactions the detectors are never 100 % efficient and they must be
calibrated using also sophisticated multiple-scattering Monte-Carlo codes (such as
GEANT4).

17.4 Neutrons

Table 17.1 shows the traditional classification of neutron according to their energies,
partly following Ref. [NIC05]. The methods of production and detection of neutrons
at the different energy regions are quite different and cannot be discussed here in
detail. Only a short survey will be given below.

17.4.1 Production of Neutrons

Neutrons (better: neutron beams) can be produced either in nuclear reactors or
in nuclear reactions initiated by charged particles, especially also in dedicated
accelerator-based spallation neutron sources (SNS). In the first instance there ex-
ist special research reactors with high accessibility to the high neutron flux inside or
near the core. Examples for such facilities are the Laue-Langevin Institute at Greno-
ble or the reactor FRM-II at TUM (Munich) with neutron fluxes of the order of
1014 s−1 cm−2. Neutron energies reach from almost 0 (ultracold or UC) to a few
MeV. Special methods have to be applied to obtain neutrons with well-defined ener-
gies or well-collimated beams of neutrons, or polarized neutrons, in order to perform
reactions that are equivalent to mirror reactions with charged particles. Such “par-
allelism” is necessary to evaluate the effects of the Coulomb force and additional
charge-symmetry breaking effects.
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Typical neutron-producing reactions are (α,n), (γ,n), (p,n), and (d,n). The
(α,n) reaction has been widely used as neutron sources by combining an α emitter
such as 226Ra, 239Pu, or 226Po with e.g. 9Be, and initiating the 9Be(α,n)12C (Q=
5.7 MeV) reaction. By surrounding the source with hydrogeneous material (paraffin,
plastic or water) neutrons thermalized to En = 0.025 eV are obtained. Similarly,
with a strong and energetic γ source such as 24Na and 9Be or 2H as targets, near-
monochromatic neutrons may be produced.

Accelerator-produced neutrons in the MeV energy range can be obtained
from a host of different reactions. Most prominent are the 2H(d,n)3He and the
3H(d,n)4He reactions. Their high cross sections at low energies have made them
useful tools in many low-energy installations. The choice of energies by varying the
accelerator energies and emission angles together with proper collimation schemes
provides (near-)monoenergetic neutron beams with good geometry for nuclear re-
actions.

Spallation neutron sources based proton beams from 1 GeV LINACS produce
neutrons with energies in the hundreds of MeV range that can be used for funda-
mental research as well as for many industrial and scientific applications e.g. in
solid-state physics. The SNS produce very high neutron fluxes. A planned Euro-
pean facility, the ESS, will start in 2019 with 1.5 MW and aims at 6 MW by 2025.
The SNS developments are in line with efforts to develop nuclear-waste disposal
facilities by combining a spallation neutron source with a subcritical reactor (ADS
transmutation), see Fig. 19.6.

Detailed accounts of all the methods specific to production and handling of neu-
tron beams are beyond the scope of this text, and the special literature should be
consulted. For older monographies see e.g. [BAR58, MAR60, MAR63, BEC64].
Neutrons interact with all four fundamental forces and these interactions are acces-
sible to experimental investigations. The many and increasing uses of neutrons (es-
pecially slow neutrons) as research objects complement in many ways the low- and
high-energy research into fundamental questions of the standard model and beyond
(e.g. details of the weak interaction, of symmetry breakings (parity, time-reversal,
etc.)) and of Big Bang Nucleosynthesis. A more recent survey on this subject is
given in Ref. [NIC05]. A good source of “neutron methods” in compact form is
Ref. [MAR70].

Methods of detection of neutrons are briefly summarized below.

17.5 Neutron Detectors

The detection of neutrons has to rely on indirect methods. In the context of nuclear
reactions neutrons play special roles.
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17.5.1 Neutron-Induced Reactions

• Neutrons are not subject to the Coulomb force in the entrance channel. Therefore,
their cross sections do not become very small at very low energies.

• Neutron-induced reactions can be considered as the isospin-symmetric counter-
parts of proton reactions. By studying compound resonances for the two channels
states with similar hadronic structures can be observed, their Coulomb-energy
differences can be measured and possible effects of isospin breaking can be in-
vestigated. Actually the discovery of the neutron in 1932 by Chadwick [CHA32a,
CHA32b] immediately cleared the composition of nuclei and the similarity be-
tween neutrons and protons caused Heisenberg [HEI32a, HEI32b, HEI32c] to
propose the concept of isospin. The neutrons may be “injected” into a target nu-
cleus in two ways: directly using neutrons from a nuclear reaction or a reactor, but
also by one-neutron transfer reactions such as (d,p) stripping, see Chap. 10. The
excitation energies in the compound or final-nucleus systems are quite different
due to the negative neutron-separation energy.

• Neutrons must be measured in all energy regions in order to determine the inci-
dent flux in a reaction, necessary for absolute cross sections. Therefore, an entire
arsenal of different methods depending on neutron energies is available here.

17.5.2 Neutrons as Reaction Products

Outgoing neutrons from nuclear reactions normally have energies in the keV/MeV
range, for which the standard methods consist in using some recoil material com-
bined with scintillators and phototubes. Neutron spectroscopy relies on quite differ-
ent methods depending on energy.

17.5.3 Different Neutron Detection Methods Depending
on Neutron Energies

Table 17.2 lists in compact form the different methods of neutron detection as func-
tion of the neutron energies. Like photons neutrons are not “stopped” in material (as
charged particles with a definite range) but lose their energy by several processes
ending up in charged particles that in turn are registered in the usual way. Such pro-
cesses may be collisions with atoms resulting in recoiling charged nuclei (e.g. pro-
tons) that can be detected in a scintillator, or nuclear reactions with charged ejectiles.
In any case, the absolute determination of neutron fluxes and thus detector efficien-
cies, and of neutron energies is difficult and requires careful calibrations taking into
account multiple-scattering events by suitable correction methods and codes.

Outgoing neutrons from nuclear reactions normally have energies in the keV/MeV
range, for which the standard methods consist in using some recoil material com-
bined with scintillators and phototubes. Historically fast neutrons were registered
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Table 17.2 Neutron detection methods

Method Reaction Energy
Region (eV)

Features

Boron-filled Counters 10B(n,α)7Li+ 2.78 MeV BF3 gas-filled

Recoil Proton np Scattering Recoils Fast Plastic or Liquid

Scintillation <2 · 10−3

n Activation Thermal ≈0.025 Reactor+Moderator

Fission Chamber Epithermal >0.5

Semiconductor np Recoils Fast Hydrogeneous Converter

in proportional counters filled with a gas such as 10BF3, in which the reaction
10B(n,α)7Li produces charged particles that—after electron multiplication—result
in an electric pulse. The very limited sensitive volume and other properties of these
detectors made them obsolete as soon as suitable scintillators had been developed
that—in conjunction with photomultipliers—provided large sensitive volumes, of-
ten as solids and liquids high densities and the possibility to shape the detectors ac-
cording to experimental requirements (a more recent example are scintillating fibres
that combine the functions of scintillator and light guide with position sensitivity).
Here only a few prominent types of modern neutron detectors will be discussed.

Plastic Scintillators Plastic scintillators consist of organic material, into which a
scintillating material and a wavelength shifter are mixed. The latter is necessary be-
cause the maximum quantum efficiency of photomultiplier cathodes is in the visible
region of the spectrum. In addition it should have the following properties:

• Optical transparency;
• Machinability and polishable surfaces;
• High quantum efficiency;
• High density;
• Discrimination between neutrons and γ ’s;
• Fast response for high count-rate capability.

The typical output spectrum of recoil protons in a hydrogeneous material such as
polyethylene is a flat continuum resulting from the (almost) isotropic np cross sec-
tion and scattering under all possible angles. The maximum energy is that of the
incident neutrons.

Liquid Scintillators Scintillators filled with organic liquids are very much like
solid organic scintillators in an appropriate solvent, often with a wavelength shifter
to adapt the light spectrum to the sensitivity function of the multiplier. They can be
made quite large and are therefore often used for cost reasons. Most liquid scintilla-
tors, sensitive to neutrons, are also sensitive to γ ′′s, and some kind of pulse-shape
discrimination has to be applied to separate the two (the rise-time characteristic is
different for the two).
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Gaseous Scintillators Among the possible gaseous scintillators 3He is most
prominent. Its use is based on the reaction 3He(n,p)3H.

Owing to the continuous spectra in most neutron detectors the precise energy
determination requires additional provisions. One good method is the measurement
of the time-of-flight of the neutrons, e.g. with a start trigger signal from the pulsed
accelerator beam and a stop signal from the neutron detector or triggering by an
associated γ event. With fast scintillators ns time resolution can be obtained. For
slow neutrons mechanical velocity selectors (“Fizeau”-type) have been used.

17.6 Polarized Neutrons

Slow neutrons can be polarized by the interaction of their nuclear spin with the
aligned spins of magnetized iron (Bloch Effect.) High polarization values have been
obtained after transmission of neutrons through a slab of magnetically saturated iron
of sufficient thickness. If the cross sections for the interaction of neutron spins with
the spins of the magnetized material are different for spin up σ ↑ and spin down σ↓
the transmissions T ↑ and T ↓ can be described by

T ↑/↓ = exp
(−ρσ↑/↓L

)
, (17.2)

where ρ is the spin density of the material and L is the interaction target thickness.
The polarization is

Pn = exp(−ρσ↑L)− exp(−ρσ↓L)

exp(−ρσ↑L)+ exp(−ρσ↓L)
. (17.3)

A large amount of neutron research is done with slow (from thermal to ultracold)
neutrons. For these polarization methods, different from those for protons, have to be
used. The small magnetic moment excludes Stern-Gerlach methods of mechanical
spin-state separations. But the strong spin dependence of low-energy scattering and
absorption cross sections can be used for efficient polarizers.

A very modern method for very-low energy neutrons is to use reflection from
magnetized mirrors (multi-layer super mirrors), which have different critical angles
for total reflection of the neutrons depending on the spin direction. Neutron polar-
izations >90 % have been achieved at flux densities of ≈2 · 108 cm−2 s−1mA−1 at
the “FUNSPIN” Polarized Cold Neutron Facility at PSI, Villigen, Switzerland.

17.6.1 Magnetized Materials

In fully magnetized iron the spins of almost all conduction electrons are aligned
along the magnetic field. The two spin states of the neutron interact differently with
these spins. Thus the transmission cross sections are very different

σ
(
n↑ + Fe

)� σ
(
n↓ + Fe

)
. (17.4)
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Fig. 17.8 SEOP neutron
spin-filter scheme with
optical-pumping device as
target for unpolarized
neutrons resulting in highly
polarized outgoing neutrons.
The polarization of
Laser-pumped Rb atoms is
transferred to 3He by gas
collisions. The target density
may be several bar

The transmitted neutrons are therefore highly polarized, and a similar transmission
device can serve as a polarization analyzer.

17.6.2 Polarized 3He as Spin Filter

The neutron absorption by 3He is highly spin-dependent. A beam of unpolarized
neutrons (i.e. from a reactor) passing through polarized 3He gas acquires spin po-
larization, i.e. the reaction acts as a spin filter. The transmission cross section for
that half of the neutron beam with spin up (relative to a quantization axis defined
by a magnetic field) is almost zero, that for the spin-down neutrons is very high,
resulting in very high polarization (see Chap. 5 and [HGS12]). At resonance in 4He
near 25 meV the cross section σ↓ is many thousand times the cross section σ↑. If,
in Eq. (17.3), we insert the spin-state cross sections and replace the exponential ex-
pression by the tanh function we obtain for the polarization of the outgoing neutrons
as function of the 3He polarization

pn =− tanh(nLσp3He), (17.5)

where n is the density of 3He atoms and L the gas-cell diameter, typically 5–10 cm.
The methods (MEOP: Optical pumping with metastability exchange; or SEOP:

Optical pumping with spin exchange with laser-polarized Rb atoms) of producing
highly polarized 3He with acceptable densities have been perfected in recent years.
Therefore a glass cell containing optically pumped polarized 3He gas, if used as a
neutron target, is a good neutron polarizer. Figure 17.8 shows the setup schemati-
cally. Polarization values of p3He ≈ 0.65 have been reached. Fast polarized neutrons
(at MeV energies) may be produced in nuclear (d,n) reactions such as the fusion
reaction 2H(2H, n)3He, provided there is a spin-dependent interaction. Especially
efficient for producing polarized neutrons is polarization transfer, i.e. inducing the
reaction by beams with high polarization from a polarized-ion source at the required
energy and under 0◦ (see Chap. 5 and [HGS12]).

Special Dual Role of Neutrons The neutron is a useful probe for different in-
teractions (in nuclear reactions as well as in the interaction with solid and liquid
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Fig. 17.9 Energy
dependence of the cross
sections of the three main
interactions of γ ’s with
matter

samples), but its structure and decay are interesting objects of fundamental investi-
gations. A few examples:

• The β decay of the neutron is a key observable for the weak interaction. Its decay
spectrum is investigated to get a hold on the electron-neutrino mass.

• The search for its electric dipole moment is a key to a possible time-reversal
violation.

• The wave nature of the neutron enables the study of interference and diffraction
of neutrons.

• Neutron radiography and activation analysis are important methods in art history,
archaeology, and national security matters.

17.7 γ Spectroscopy

The three main processes, by which γ ’s are interacting with matter are

• Photo effect: the photon is absorbed and loses its energy to an atomic electron
according to Einstein’s equation

hν = Telectron +W (17.6)

where W is the work function of the detector material. The fully stopped electron
produces a line in a γ spectrum (full-energy peak).

• Compton Scattering: The photon is scattered from an electron in a characteris-
tic angular distribution described by the Klein-Nishina formula, creating a re-
coil electron, which produces light (in a scintillator) and/or secondary ion pairs
in semiconductor. Like in classical mechanics the photon collides and is scat-
tered into all possible angles, similarly for the recoil electron. Therefore, when
weighted with the differential cross section of Compton scattering a continuous
spectrum from 0 up to a maximum energy ending below the full-energy peak
results. The maximum recoil-electron energy (the Compton edge) is given by
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Fig. 17.10 Schematic
spectrum from one γ of
energy >1.022 MeV in a
detector of finite size in a
γ -reflecting environment
(e.g. large Z shielding etc.).
The different contributions
are indicated. Their relative
contributions depend on
energy, detector material,
detector size and shape,
shielding etc.

Fig. 17.11 View of
MINIBALL in the setup
phase as an illustration

hνout = hνin

1+ hνin
m0c

2 (1− cos θ)
(17.7)

for θ = 180◦ where m0 is the electron’s rest mass.
• Pair Formation: Above a minimum energy of 1.22 MeV electron-positron pairs

may be created, which again produce light and/or ion pairs. The positron quickly
annihilates with an electron and creates a characteristic line in a spectrum at
511 keV. If the positron escapes the finite detector volume its energy is missing in
the spectrum and a photopeak with energy E0—0.511 keV (escape peak), when
both (the e+ and e−) escape, one with E0—1.22 MeV (double-escape peak) are
created.

The three processes have very different energy dependences shown in Fig. 17.9.
The many different effects following from the interaction of just one γ result in a
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Fig. 17.12 View of different parts of the 180-detector AGATA setup and expected resolution
around 1 keV in comparison with that of EUROBALL. The spatial resolution is from 3–7 mm
and the efficiency from 20 to 40 %, depending on energy. From the homepage of the AGATA
collaboration 2013

complicated spectrum, as shown schematically in Fig. 17.10. It is clear that already
a spectrum from two γ ’s with different energies (e.g. the two energies of a 60Co
source at 1.33 MeV and 1.17 MeV) is complicated. Much more so if we have very
many γ transitions as is typical for nuclei excited by Coulomb excitation or fusion-
evaporation reactions (see Chap. 13). Therefore, efficient methods to suppress espe-
cially the Compton continuum have been developed. One method is to surround the
Ge detector with another detector in coincidence and adding up all events generated
in both systems, which ideally reduces the Compton continuum and enhances the
full-energy peak.

The limited efficiency of γ detectors can be counteracted by registering events
in the full solid angle of 4π , i.e. by constructing detector “balls” (such balls have
names like EUROBALL, MINIBALL, GAMMASPHERE etc. and have been comp-
ton suppressed), see e.g. Refs. [EBE08, WAR13]. Figure 17.11 gives a view of
MINIBALL, a smaller 4π gamma multi-detector setup during assembly with cluster
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detectors with γ -ray tracking capability. New techniques allow tracking of γ rays,
i.e. a position-sensitive reconstruction of the path together with identification of the
nature of each event. This allows the summation of all relevant energies and no spe-
cial Compton suppression is necessary. Such4π detectors with up to 180 (planned)
detectors on a sphere use HPGe detectors only and will have high (relatively) ef-
ficiency together with unprecedented energy resolution on the order of 1 keV, de-
pending on energy. A European collaborative project of this kind is AGATA (for an
authoritative reference on the latest developments see [AKK12]) and a similar one
in the US is GRETINA/GRETA. Figure 17.12 shows a feature survey of the AGATA
project under construction. An AGATA demonstrator with a smaller number of de-
tectors has recently been implemented. For more details, see also Ref. [GRE13].
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Chapter 18
Medical Applications

18.1 Particle (Hadron) Tumor Therapy

The leading principle of radiation therapy is to destroy tumor cells as efficiently
as possible while sparing healthy surrounding tissue cells as much as possible. The
classical methods of destroying tumor cells (more specifically: the DNA in the cells)
besides chemotherapy have been the irradiation by γ rays from intense radioactive
sources such as Cs or from bremsstrahlung produced by electron beams typically
from betatrons. The interaction with tissue is characterized by the exponential de-
crease of the intensity with depth due to absorption by the “all-or-nothing” character
of the photo, Compton and pair-creation events. Thus, the damage to tissue of the
human body is maximal at the skin. Rotation of the patient (or the radiation source)
around the tumor improves the ratio of tumor damage to that of surrounding tissue.
Nevertheless severe side-effects are common in these “classical” treatments.

Particle tumor therapy is based on interactions of charged particles with the elec-
tron shell of the atoms or molecules inside human cells (more specifically with the
DNA) by ionization and excitation. Due to the large mass ratio between the ions and
the electrons these interactions consist in many small energy losses in the collisions
with very small angular deflections that add up stochastically to three effects:

• Finite average range of the particles in matter depending on energy.
• For a beam of many particles: A scatter of ranges about this average, i.e. energy

and range straggling with gaussian behavior.
• Gaussian widening of an initially collimated beam by angle straggling.

However, these straggling effects are small as compared to the well defined energy,
range, or beam shape. In addition, the energy loss (the “differential ionization”) in-
creases with decreasing energy, i.e. during the stopping process and has a maximum
near the end of the path (Bragg curve [BRA05]—this behavior is already well de-
scribed by the semi-classical theory of Bethe and Bloch [BET30, BLO33, FAN63],
see many textbooks on nuclear physics). Modern computing codes such as GEANT4
[AGO03, GEA], SRIM [ZIE] and FLUKA [FLU05] take all details of the slowing-
down in matter into account and are widely applied. Figure 18.1 shows a typical
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Fig. 18.1 Typical Bragg curve of the medically applied relative dose, in a water phantom, for
protons of 131 MeV with a range of about 12.7 cm, compared to the ionization by a beam of 12C
ions of 250 MeV/u (left). The energies have been adjusted to show the Bragg peaks at the same
depth. The depth distribution of the proton peak, which is caused by range straggling ∝M−1/2

is wider than that of the 12C peak, which, in turn, shows some remaining ionization behind the
Bragg peak. On the right the relation of the range of protons in water to the initial proton energy in
MeV. The range is often defined as the depth of penetration where the dose behind the Bragg peak
decreases to 80 %

Bragg curve for protons and 12C ions and the range-energy relation of protons in
water. Water phantoms are generally used to model the human tissue. This makes
charged-particle beams of sufficient energy appear ideally suited to treat circum-
scribed tumors in the depth of the human body where they deposit the maximum
of their energy while the surrounding tissue gets much less ionization. The meth-
ods of delivering the charged-particle energy have been developed largely in anal-
ogy to nuclear physics methods. The beams can be shaped accurately in three di-
mensions, laterally by ion-optical elements such as magnetic or electrostatic lenses
and diaphragms, longitudinally by choosing the appropriate energies. The neces-
sary ranges require medium-energies that can be produced by LINACS, synchro-
cyclotrons, or synchrotrons. Mainly protons and 12C ions have been used so far suc-
cessfully. The shapes of their ionization vs. distance (Bragg) curves differ slightly.
Proton ranges of tens of cm are obtained with energies of several hundred MeV, sim-
ilarly for heavy ions, when measured in MeV/nucleon. One problem associated with
the stopping of charged particles in tissue may be secondary neutral particles such
as neutrons or γ ’s, for which the advantages of charged particles such as controlled
spatial confinement are not equally valid.

So far more than 90,000 patients worldwide have been treated by proton ther-
apy methods, more than 6,500 by 12C ion therapy. The recent developments include
methods to spread the beam Bragg region evenly over a given tumor volume that
often has an irregular shape. This can be approached by straggling the beam on a
scatterer, but a better method is guiding the focused beam with optical elements over
the volume with proper adjustment of the energies (raster scan). Gantry construc-
tions, which allow irradiation from all directions without loss of beam quality and
with synchronous adaptation of the beam spot to the treatment volume have become
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Table 18.1 Most common
general radionuclides Radionuclide Half-life (h) γ energy (keV) Imaged organ

201Tl 73.0 80 Heart
111In 67.2 240 Infection
67Ga 78.3 100–300 Abdomen
123I 13.2 160 Thyroid

operational (e.g. at the HIT (Heidelberg Ion Therapy) center), with 12C as well as
proton beams, [HEI12], or CNAO, Pavia [ROS11, ROS13]. Rotation of the beam
around the tumor together with raster scanning over the 3D volume of the tumor
allows maximal efficiency together with minimal damage to surrounding tissue.

18.2 Isotope Production

A large number of different (radioactive) isotopes are used in medical diagnostics
and therapies. Examples are shortlived nuclides such as β+ emitters like 11C, 13N,
15N, and 17F used in PET scanners (PET = positron emission tomography). The
increased metabolism of tumors leads to enrichments of molecules containing the
isotopes in primary tumors and metastases, which can be spotted inside the body
with high accuracy and sensitivity not obtainable by other methods. A number of
radio-pharmaceuticals are used for diagnosis and treatment of many different dis-
eases such as heart conditions etc.

• Scintigraphic methods use predominantly 99mTc (T1/2 = 6 h) as a tracer isotope.
Table 18.1 lists a few common radio-pharmaceuticals (out of more than 30 med-
ically useful isotopes). For the production of the radionuclides mostly cyclotrons
with proton beams of up to 40 MeV and beam currents of up to several hun-
dred µA are in use.

• Positron emission tomography (PET) is the most detailed method to especially
spot metastases in the human body that may not be seen by other methods such as
nuclear magnetic resonance tomography (MRT) or computer tomography (CT).
It is based on the enrichment of certain elements in tumor tissue, emission of two
γ ’s head-on after emission of a positron. The tracer nuclide of suitable half-life
has to be inserted into a suitable biomedical compound. More than 500 different
PET compounds have been identified, but only a small number is used in prac-
tice. Very common is 18F deoxyclucose (FDG) which is used in oncology, neurol-
ogy, and cardiology. The nuclides are mostly produced with (compact) cyclotrons
(<20 MeV protons or <10 MeV deuterons with beam currents of ≈100 µA).
Typical tracers are listed in Table 18.2.

Additional useful references are [GAN88, TRS08]. It should be mentioned that
many dedicated facilities are operating worldwide but that research efforts towards
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Table 18.2 Most common PET radionuclides

Radionuclide Production reaction Half-life Method

11C 14N(p,α)11C 20.4 m Cyclotron
13N 16O(p,α)13N 10 m Cyclotron
15O 14N(d,n)15O 2 m Cyclotron
18F 18O(p,n)18F 110 m Cyclotron
82Rb 1.2 m “82Rb Generator”

EC decay of 82Sr 25.35 d Spallation Ep = 40–90 MeV

smaller (“table-top”) and automated accelerators for nuclide production, using su-
perconducting magnets or even laser-beam acceleration techniques, are underway in
order to provide e.g. more wide-spread PET services or other technical applications.

18.3 Exercises

18.1 Considering the Bethe-Bloch equation (17.1) describing the process of energy
loss of charged particles in matter, and the attenuation of uncharged parti-
cles (γ ’s and neutrons) by “all-or-nothing” interactions in matter: How do the
dose-depth distributions differ in the two extreme cases? What are the medical
consequences, i.e. to which kinds of cancers are both methods best suited?

18.2 How would you proceed to produce suitable beams of γ ’s, neutrons, protons,
or heavy ions? How can the geometries (in three dimensions) of the different
kinds of beams be shaped to optimize the pertinent treatment?

18.3 Beams of π− have been used for tumor therapies. How can they be produced
(types of primary particles, their energies, intensities, types of accelerators)?
What happens in the Bragg-peak region, i.e. near the end of their path through
tissue (think of their negative charge and of muonic atoms for comparison)?
What is the final fate of the pions as hadronic antiparticles and what are the
additional medical effects, as compared to protons or heavy ions?

18.4 For tumor diagnostics by positron-emission tomography (PET) β+ emitters
such as 18F (half-life T1/2 = ln 2/λ= 110 m) are used. It can be produced by
a compact cyclotron with a proton beam of typically 10 MeV and currents of
up to 100 µA in the 18O(p,n)18F reaction (Q-value=−2.437 MeV). For one
PET diagnosis a quantity of 20 mg is required.

(a) Confirm the Q-value from the masses involved (use nuclear-mass ta-
bles or compilations such as the Nuclear Wallet Card, for references see
Sect. 22.1).

(b) What is the lab. threshold energy of this reaction (with the target at rest)?
Discuss the shape of the integrated cross-section excitation function of this
reaction as shown in Fig. 18.2 (cf. Sect. 4.1).
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Fig. 18.2 Excitation function
of the integrated cross section
of the reaction 18O(p,n)18F
producing the PET tracer
isotope 18F. From [NNDC]

(c) The production rate R (in s−1) of the final nuclide, when using a thick
target, is described by the formula

R ≡ dn

dt
= n ·Φ(1− e−λt

)∫ Efin

Ein

σ(E)

dE/dx
dE, (18.1)

with n the number of target nuclei per cm−2, Φ the flux of incident parti-
cles per s, σ(E) the reaction cross section as function of energy in mb, and
dE/dx the stopping power (the differential energy loss) at the energy E

in the target material. Discuss the structure of this formula that describes
the process of saturation of the production rate. What is the final saturation
rate R0? What are reasonable irradiation times in terms of the half-life?

(d) Try to evaluate R approximately for a proton beam of 10 MeV, a current
of I = 10 µA, and a thick liquid target of 100 % enriched H18

2 O at normal
density. Use all information on energy loss and range from tables or poly-
nomial fits to data, e.g. [ZIE85, ZIE] and approximate the cross section
suitably. Programs such as GEANT4, FLUKA, and SRIM can perform
the task more accurately.

(e) What is the irradiation time for R = Ro/2? What is the activity of the
entire sample after that time and how many treatments are possible?

18.5 Suppose a superconducting mini-cyclotron with a magnetic field of 5 T could
be built. What would be its diameter for 15 MeV protons (deuterons) (see
Sect. 16.2.2)?
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Chapter 19
Nuclear-Energy Applications

19.1 Fusion-Energy Research

19.1.1 Fusion Basics

Fusion-energy research concerns mainly nuclear reactions in the low-energy regime
of up to a few hundred keV and mainly the determination of cross sections. The en-
ergy range of interest overlaps largely with that of nuclear astrophysics, see the pre-
ceding Chap. 14 whereas the relevant nuclear reactions are limited to few-nucleon
fusion reactions i.e. those of the four- and five-nucleon systems. In cases where the
goal is to determine the exact reaction mechanism also measurements using polar-
ized particles are important. Very specific questions deal with possibilities using
polarized particles to enhance the reaction rates, to suppress certain reaction chan-
nels (e.g. outgoing neutrons), and to give ejectiles preferential emission directions,
see e.g. [HGS10]. Non-linearities between reaction rates and ignition criteria could
make the use of polarized fusion fuels even more attractive.

Besides the cross sections and reaction parameters (see Figs. 14.1 and 14.6) the
power densities produced by different reactions in typical reactor situations are im-
portant. Figure 19.1 illustrates this and shows the prominent role of the 3H(d,n)4He
reaction.

Here a few quantities relevant for fusion (as well as for nuclear astrophysics) at
low energies will be recapitulated. These are the basic cross sections, the reaction
parameter, which determines the reaction rates in a thermonuclear reactor, and the
power density, which depends also on the reaction-particle densities.

19.1.2 Nuclear Cross Sections

The basic cross sections of the relevant nuclear low-energy reactions have been
shown in Fig. 14.1. The resonant behavior of the five-nucleon reactions is clearly

H. Paetz gen. Schieck, Nuclear Reactions, Lecture Notes in Physics 882,
DOI 10.1007/978-3-642-53986-2_19, © Springer-Verlag Berlin Heidelberg 2014
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Fig. 19.1 Relative power
density of relevant fusion
reactions as functions of
energy

visible whereas other reactions such as the D+D reactions appear non-resonant. It
is also evident how the cross section towards lower energies is entirely dominated
by the Coulomb penetrability.

In order to separate the influence of the Coulomb penetrability from the nuclear-
reaction part it is customary to introduce the astrophysical S-factor S(E), which is
defined, using the Sommerfeld parameter with Z1, Z2 the charge numbers and μ

the reduced mass of the entrance-channel particles as

ηS = Z1Z2e
2

�v
= Z1Z2

(
e2

�c

)
c

v
= Z1Z2

α

β
=
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μ

2Ec.m.

Z1Z2e
2

�
. (19.1)

For s-waves only and assuming a point-Coulomb interaction of the bare nuclei it
is

S(Ec.m.)= σtot(Ec.m.) ·Ec.m. · e2πηS . (19.2)

For purely s-wave, non-resonant, reactions in a limited range of low energies such
as the D +D reactions the S-factor is smooth and practically energy-independent,
higher partial waves cause an increase, and resonances show the typical excur-
sions. The effects of electron screening at very low energies has been discussed
in Sect. 14.2.

The quantities relevant for fusion-energy studies thus are the integrated (or to-
tal) cross section σ and, derived from this, the S-factor, the reaction coefficient (or
reaction parameter) 〈σv〉, and the (relative) power density Pf .

19.2 Five-Nucleon Fusion Reactions

The important reactions to be discussed here are:

• d + 3H→ n+ 4He+ 17.58 MeV
• d + 3He→ p+ 4He+ 18.34 MeV

The two mirror reactions have some very pronounced features: At the low energies
discussed here both proceed via strong s-wave resonances (at deuteron lab. energies
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of 107 keV for 3H(d,n)4He, and 430 keV for 3He(d,p)4He, respectively). These
resonant states are quite pure Jπ = 3/2+ states with possibly very little admixture
of a Jπ = 1/2+ s-wave and/or higher-wave contributions.

19.2.1 “Polarized” Fusion

Increasing energy demand in view of limited supply, as well as environmental and
nuclear-safety concerns leading to increased emphasis on renewable energy sources
such as solar or wind energy are expected to focus public and scientific interest in-
creasingly also on fusion energy. With the decision to build ITER (low-density mag-
netic confinement, MCF) and also continuing research on (high-density) inertial-
confinement fusion (ICF, cf. the inauguration of the laser fusion facility at the
Lawrence Livermore National Laboratory) prospects of fusion energy have prob-
ably entered a new era. The idea of “polarized fusion”, i.e. using spin-polarized
particles as nuclear fuel was developed long ago ([KUL82, KUL88], and for more
recent developments see [POL99, HGS10, HGS12]). It offers a number of modifi-
cations as compared to conventional unpolarized fusion. The main features are:

• Neutron management: replacement or reduction of neutron-producing reactions
in favor of charged-particle reactions.

• Handling of the emission direction of reaction products.
• Increase of the reaction rate.

Some of these improvements may lead to lower ignition thresholds and to more
economical running conditions of a fusion reactor due to less radiation damage and
activation to structures and especially the blanket, necessary to convert the neutron
energy to heat, or may lead to concepts of a much simpler and longer-lasting blanket.
At the same time its realization will meet additional difficulties, for which solutions
have to be studied. Some of these are:

• Preparation of the polarized fuel, either in the form of intense beams of polarized
3H, D, or 3He atoms or as pellets filled with polarized liquid or solid.

• Injection of the polarized fuel.
• Depolarization during injection or during ignition.

As an example of a recent efforts to address some of these questions we cite
Refs. [HON07, DID11, DID11a]. The energy range, in which the relevant fusion re-
actions will take place is <100 keV where the Coulomb barrier strongly suppresses
charged-particle cross sections. This is the reason why necessary experimental po-
larization data with sufficiently high precision such as spin-correlated cross sections
have not been measured. Existing reaction analyses and predictions for polarized fu-
sion relied on existing world data sets of other (simpler) data. On the other hand, suf-
ficiently microscopic and therefore realistic theoretical predictions (such as for the
three-nucleon system) are just beginning to become available for the four-nucleon
systems at the required low energies [DEL10]. An interesting question is whether
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Fig. 19.2 Spin-correlation measurement of the �3He( �d,p)4He reaction at Ed(lab) = 430 keV.
This energy corresponds to that of the s-wave Jπ = 3/2+ resonance. The lines are least-squares
Legendre fits. By permission of Birkhäuser Verlag, Basel

the recently discussed electron-screening enhancement ([ROL95, HUK08] and ref-
erences therein) of the very-low energy cross sections has any bearing on polarized
fusion.

It should be mentioned here that in the past polarization observables played a de-
cisive role in elucidating the reaction mechanisms of few-body reactions as well as
the nuclear structure of few-body nuclei, especially in the two- to six-body systems.
At present only four- or five-nucleon systems are considered for fusion energy.

This has been a long-time point of discussion, mainly because of the reactions
being very good absolute tensor-polarization analyzers, provided they proceed only
through the s-wave, Jπ = 3/2+ state. Experimental evidence shows that other con-
tributions are small (of the order of a few %). An example of the 3He(d,p)4He
reaction on resonance is an early spin-correlation measurement [LEE71a, LEE71b]
supporting this assumption, see Fig. 19.2. For a recent discussion of this reaction
at low energies see e.g. Refs. [GEI99, BRA04]. The results for the mirror reaction
3H(d,n)4He are similar.

The relatively good knowledge about these two reactions allows the conclusion
that with polarized beams and targets an enhancement of the fusion yield close to a
factor of 1.5 may be expected. A simple hand-waving statistical argument shows that
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Fig. 19.3 Typical emission
anisotropies of
neutrons/protons from the
s-wave analyzing power T20,
as well as the vector-vector
and tensor-vector spin
correlation cross sections
from C10,10, C20,11, and
C11,11 along and
perpendicular to the z axis of
the reactions 3H(d,n)4He or
3He(d,p)4He

the reactions, if they go entirely through the 3/2+ state and with the entrance chan-
nel prepared in a stretched configuration, as compared to the unpolarized entrance
channel with a purely statistical spin configuration, yields just this enhancement.

Another interesting feature of polarizing the fuel for the two five-nucleon reac-
tions is the possibility of controlling the emission directions of the neutrons (pro-
tons) and also the α particles. The angular distributions for unpolarized nuclei at
the resonance energies are isotropic in the c.m. system (with pure s-wave assumed)
resulting in a small anisotropy in the laboratory system. The angular distribution
of the tensor analyzing power T20 follows dσ

dΩ
∝ P2(cos θ) and that of the spin-

correlation cross section, if all nuclei were vector-polarized along the magnetic field
(e.g. of a tokomak reactor) also C10,10 ∝ P2(cos θ). Figure 19.3 shows the P2(cos θ)

anisotropy. Other spin correlations have other anisotropies: C11,11 ∝ P 2
2 (cos θ), and

C11,20 ∝ P 1
2 (cosh θ). Thus neutrons could be diverted away from the walls and al-

pha particles directed into the plasma enhancing the plasma temperature. It has also
been argued [KNI86] that for a tokomak near ignition the ignition conditions change
non-linearly with the reactivity thus leading to increases of gains by more than 50 %
using polarized fuel.

19.3 Four-Nucleon Reactions

The most important four-nucleon fusion reactions are the D +D reactions, which
in a plasma also inevitably accompany the more important five-nucleon reactions
discussed above:

• d + d→ n+ 3He+ 3.268 MeV
• d + d→ p+ 3H+ 4.033 MeV.

Whereas the situation of the five-nucleon systems is relatively clear-cut the four-
nucleon systems and especially the two DD reactions have a number of problems in
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their description, especially in view of “polarized fusion”. Different from the five-
nucleon case the non-resonant reaction mechanism is very complicated (at least
16 complex matrix elements including S, P , and D waves have to be considered
with spin-flip transitions from the entrance to the exit channel, which contribute
even at low energies). One consequence of participating P waves is that they are
the only reactions with appreciable vector- (besides tensor-)analyzing power even
down to 20 keV lab. energy, which makes them very useful analyzer reactions at
these energies (see also [HGS10, HGS12]). In a semi-classical picture this is made
plausible with the large extension of the deuteron wave function and therefore large
interaction distance of the two deuterons.

19.3.1 Suppression of Unwanted DD Neutrons

Aneutronic fusion may have a number of advantages (not the least unimportant eco-
nomic ones) over the use of neutron-producing reactions. At an advanced stage the
3H(d,n) reaction could be replaced by the 3He(d,p) reaction. However, DD neu-
trons would remain. It has been suggested by theoretical approaches that DD neu-
trons could be reduced substantially by polarizing the deuterons, thus forming a
quintet (S = 2) state. The main argument was that quintet states in the entrance
channel would require spin-flip transitions, which are Pauli-forbidden in first order.
However, this argument would be invalid if the reactions proceeded via the D state
of the deuteron, and so far the (indirect) experimental evidence does not support this
conjecture, see e.g. [HGS10]. For all of these reasons the prediction of suppression
or enhancement of the D+D reactions is not possible by considering spin coupling
only but requires detailed theoretical and experimental studies. All more recent and
more modern studies point to relatively small, if not zero suppression or even some
enhancement below 100 keV. A direct spin-correlated cross section measurement is
still lacking, but is highly desirable.

Evidence for Suppression? Lacking a direct spin-correlation experiment at very
low energies, several indirect approaches have been taken, two of which are:

• Parametrization of world data by a multi-channel R-matrix analysis [HOF87].
• Köln parametrization of world data of the 2H(d,n)3He and 2H(d,p)3H reactions

by direct T -matrix analysis below 1.5 MeV including S, P , and D waves (16
complex matrix elements) [LEM90, LEM93, GEI95].

Both approaches allow predictions of any observable of the DD reactions, also of
the quintet suppression factor QSF and similar suppression factors for other spin
configurations, as defined below. Since these analyses the D +D data base has not
experienced much improvement by new data. New unpolarized differential cross
section data for both reactions [LEO06] and two polarization-transfer measurements
for 2H(d,p)3H [KAT01, IMI06] in the energy range discussed here should be cited.
However, it is not expected that these additional data would substantially change the
predictions summarized in Fig. 19.4.
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Fig. 19.4 Quintet suppression factor as predicted by various theoretical and from two experimen-
tal approaches using world data of DD reactions. The relevant references (numbers in parentheses
in the figure) are: (1): [LEM93] (thick solid lines), (2): [HAL84, FLE94], (3): [ZHA85, ZHA86],
(4): [FIC83, HOF84, HOF86b], (5): [UZU99], (6): [UZU02], (7): [ZHA99], and (8): [DEL07,
DEL10] (stars and thin solid lines). The predictions of Refs. [UZU99, UZU02, DEL07, DEL10]
are from microscopic Faddeev-Yakubovsky calculations

Definition of QSF In order to quantify the extent, to which DD neutrons may
be suppressed by polarizing the fusion fuel nuclei the “Quintet Suppression Factor
(QSF)” is defined as

QSF= σ1,1

σ0
, (19.3)

where

σ0 = 1

9
(2σ1,1︸ ︷︷ ︸
Quintet

+4σ1,0︸ ︷︷ ︸
Triplet

+σ0,0 + 2σ1,−1︸ ︷︷ ︸
Singlet

) (19.4)

is the total (integrated) cross section, to which the four independent channel-spin
cross sections σ1,1 (spin-quintet configuration), σ1,0 (spin triplet), σ0,0, and σ1,−1

(two spin-singlet terms) contribute with their statistical weights.
In Fig. 19.4 all results for the QSF from different theoretical predictions as well as

from the two data parametrizations for both DD reactions are shown. The theoretical
approaches reach from DWBA calculations to very recent microscopic calculations
including the Coulomb force [DEL07, DEL10] and vary widely. However, these
latest and most advanced calculations lend confidence to the idea that substantial
suppression occurs only in the higher energy range, i.e. above the region of the
Gamow peak, at which fusion-energy production will preferably take place.
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19.3.2 Possible Reaction-Rate Enhancement for the DD Reactions
by Polarization?

Whereas the appreciable enhancement of the reaction rate for the two principal five-
nucleon reactions can be considered certain this effect has to be investigated for the
two D +D fusion reactions. Although these reactions will not be first choice for a
fusion reactor, needing higher temperatures, they should be considered for more de-
veloped concepts. They would not need either 3H or 3He, both of which would have
to be “bred” artificially in contrast to 2H, which may be extracted from seawater in
sufficient quantities. The lower energies of the ejectiles of these reactions (neutrons
and protons) may also have advantages or disadvantages compared to those of the
3H and 3He reactions.

Because the D +D reactions inevitably accompany the main fusion reactions a
possible rate enhancement (or attenuation) has to be weighed against a possible rate
suppression (or enhancement) by polarizing the fuel.

19.4 Other Fusion Reactions

One other interesting option of a neutron-lean reaction should be mentioned, the
reaction

11B+ p→ 3α. (19.5)

This reaction is probably not a first choice because it has its maximum fusion cross
section near 600 keV.

19.5 Present Status of “Polarized” Fusion

In view of the wide range of theoretical predictions and the lack of direct experi-
mental evidence e.g. for the QSF it seems mandatory to perform a direct D + D

spin-correlation experiment in the energy range from 10 to 100 keV. The number
of correlation coefficients, however, is quite formidable. The general cross section
for the reaction of a spin-1 polarized beam with a polarized spin-1 target contains—
besides the unpolarized cross section—analyzing powers of beam and of target in
addition to the 32 spin-correlation terms. Parity conservation has been taken into
account. This number is reduced to 20 independent correlation terms due to the
identity of the incident projectiles, see [HGS10, HGS12]. The simplest correlation
experiment is that with both deuterons polarized in the z (the beam) direction

[
σ(θ,φ)

]
Φ=0 = σ0(θ)

[
1+Cz,z(θ)pzqz +Czz,zz(θ)pzzqzz

]
. (19.6)

Simplifications are achieved by selection of polarization components along single
coordinates and the choice of pure vector or tensor polarizations at the source (terms
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such as Cz,zz or Czz,z as well as the analyzing powers Az(b),Ax(b),Az(t), and
Ax(t) are forbidden under parity conservation).

The main difficulties with spin-correlation measurements at these low energies
are:

• The low cross sections;
• The use of solid polarized targets can be excluded because it appears impossible

to make them sufficiently thin. Therefore only two interacting polarized beams
may be employed resulting in low target densities and small yields;

• The use of (compressed) polarized gas at these low energies meets the difficul-
ties of the need for a container including very thin and, at the same time, strong
windows of polarization-conserving materials.

Thus, the only sensible experimental arrangement for measuring spin correlations
for the D +D reactions is using an intense atomic beam of polarized deuterons as
target that is crossed by another atomic or ion beam of polarized deuterons. Alter-
natively, one could think of building a low-energy storage-ring device in analogy to
COSY-Jülich where multiple target passes would compensate for the low cross sec-
tions. However, the technical and financial requirements on such a device seem pro-
hibitive. The high forward multiple-scattering cross section e.g. requires extremely
good vacuum. With existing (decommissioned) polarized-ion sources an experiment
can be set up with relatively modest efforts such that acceptable count rates re-
sult. Figure 19.5 sketches such an experimental setup. Besides and after clearing
the nuclear-physics questions concerning the low-energy DD reactions many other
problems such as preparation of polarized fusion fuel, its injection into magnetic
fields and the conservation of polarization have to be investigated. Similar to beam-
beam collisions in high-energy colliders the reaction rate into 4π solid angle is

ṅout = ṅin · σint · t = L · σint, (19.7)

where the luminosity is defined as L= ṅin · t (ṅin is the flux of polarized ions from
a polarized-ion source, incident on the target region, and t the current of “target”
polarized-beam particles from an ABS). It is left to the reader to evaluate the pa-
rameters of this experiment in the following exercises. It will be obvious that the
experiment is difficult and should be run automatically. A project along these ideas
is underway [GAT12].

19.6 New Calculations for Few-Body Systems

A phenomenon studied only rather recently is the enhancement of cross sections
of few-nucleon reactions at the very-low-energy range. Although for fusion-energy
production this may be a favorable feature, for nuclear astrophysics of the Big-
Bang scenario this constitutes a problem because the extrapolation of the S-factor to
even lower energy ranges than measured is uncertain as long as there is no reliable
theoretical guideline helping to extract the bare nuclear cross sections needed for
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Fig. 19.5 Scheme of a possible spin-correlation experiment with an atomic �D beam crossing a �d
ion beam of 10 to 100 keV. A granular 4π system of detectors surrounds the interaction region

astrophysics. Therefore, exact predictions of the pure nuclear cross sections from
microscopic theories are urgently needed.

19.6.1 Theoretical Approaches

So far—following the progress in theoretical descriptions of the three-nucleon
systems—predictions for the four-nucleon systems have been based on resonating-
group and Faddeev-Yakubovsky calculations. The high-accuracy nucleon-nucleon
interaction data have been used as input. Recent improvements have been achieved
by including the Coulomb interaction in a satisfactory way [DEL07, DEL10] and by
using the effective-field theoretical approach. One quantity of interest for polarized
fusion, the predicted quintet-suppression factor, is depicted in Fig. 19.4 and shows
the trend with energy of all modern investigations and only weak quintet-state sup-
pression of the DD neutrons at the relevant low energies. Other predictions or data
parametrizations show also weak or no suppression except for the higher lab. energy
range above ≈100 keV.

The five-nucleon systems, which have been thoroughly investigated experimen-
tally have so far not been treated theoretically by truly microscopic methods. The
calculations were either in the framework of resonating-group methods (RGM) or
in R-matrix parametrization of experimental data at higher energies, i.e. above the
astrophysically interesting energies but encompassing the J = 3/2+ resonance re-
gion. Recently ab initio many-body calculations using again the nucleon-nucleon
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interaction but also three-body forces as input have had stunning successes in de-
scribing low-lying states of a number of light nuclei [PIE01, EPE09], e.g. for 10,11B
and 12,13C.

Two successful methods are the Green’s Function Monte Carlo (GFMC) and the
No-core shell model (NCSM) methods. Recently, these have been applied to nu-
clear (astrophysically relevant) reactions such as 3H(α, γ )7Li, 3He(α, γ )7Be, and
7Be(p, γ )8Be [NA09]. Now a very recent letter [NAV11a] presented the first ab
initio many-body calculation of the 3H(d,n)4He and 3He(d,p)4He fusion reac-
tions in the framework of the ab initio NCSM/RGM approach, see e.g. [NAV11b]
and references therein, in an effort to unify the description of the (bound-state) nu-
clei involved and the (scattering-state) reaction mechanism, starting from the chiral
N3LO NN interaction. S-factors in the energy range from almost zero to 2 MeV
across the resonance region were calculated and—in view of the approximations
used, e.g. the NNLO force—show quite satisfactory agreement with the data, es-
pecially in the resonance regions, but for the 3He(d,p)4He reaction the data in the
resonance region have larger discrepancies than for the 3H(d,n)4He reaction. Since
this is only a first shot much better agreement can be expected in the future. For
details including the wealth of all available data and their comparison with the cal-
culations the reader is referred to the original article.

19.7 New Aspects of Polarized Fusion

19.7.1 Effect of Electron Screening

In Fig(s). 14.4 the effect of electronic screening is clearly visible for the reaction
3He(d,p)4He, but not so evident for 3H(d,n)4He. Of course, purely nuclear cal-
culations do not describe this part of the S-factor, and a consistent theory of the
screening is still missing. Precise extrapolations of the nuclear S-factor together
with precise measurements of the cross sections, which are difficult due to the low
energies could help to pin down the screening details, maybe also including possi-
ble polarization effects on the screening. The cross section enhancement could be
potentially useful for fusion-energy applications although the energy range of the
enhancement is below that where fusion reaction yields have their maxima.

19.7.2 Rate Enhancement and Electron Screening

From relatively simple considerations the conclusion was drawn that for the five-
nucleon particle reactions 3H(d,n)4He and 3He(d,p)4He an enhancement of the
fusion cross sections and reaction rates of up to a factor f = 1.5 (for the case of a
pure transition through the J = 3/2+ resonance state) can be expected when both
incident reaction partners are fully spin-polarized. Below the resonance energy the
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amount of enhancement is not so clear because other partial-wave states may have a
stronger influence on the cross sections, relative to the dominant 3/2+ state. In addi-
tion, electron screening modifies the cross section, and the effect of the polarization
on this modification/enhancement is unclear and should be measured. Figures 14.4
show the experimental low-energy behavior of the two five-nucleon reactions to-
gether with recent “ab initio” calculations, see Sect. 14.2. For the D +D reactions
strong screening has also been measured, see [RAI02].

19.7.3 Pellet Implosion Dynamics

In the case of inertial fusion using the compression of a fuel pellet by laser or ion
beams seems to follow a dynamics, which can additionally increase the gain by
polarizing the fuel by an additional factor. According to recent references [TEM12]
numerical simulations show that, depending on the value of f and on a number
of special conditions of pellet design etc., an additional enhancement factor seems
to arise, which—in the case discussed—changed the situation from “no ignition”
to “ignition”. Conversely, it is shown that the ignition conditions (temperature and
density) can be somewhat relaxed when using polarized fuel. Further studies of this
effect are important and necessary.

19.7.4 Technical Questions

The provision of either solid or liquid highly polarized pellets for inertial fusion may
be easier to achieve than very intense polarized beams to be injected in magnetic-
fusion devices. The hopes expressed in Ref. [PHT82] of having “amperes of polar-
ized nuclei at acceptable power cost” have not been borne out. Perhaps polarized
molecules could be produced in large quantities. These ideas, however, need thor-
ough and expensive investigations in the future. A recent proposal by [NIK11] is
to separate brute-force polarized hydrogen molecules in the ortho spin-state with
total spin I = 1 by a strong superconducting Stern-Gerlach magnet with the ex-
pectation to obtain beam intensities (or densities) higher by an order of magnitude
as compared to the atomic-beam intensities from ABS that seem to have reached
some saturation. At the proposed temperature of the molecules of T = 20 K about
99.8 % of the molecules are in the para state (the para state has I = 0) and the or-
tho molecules have to be “filtered” out from this background. Because the magnetic
interaction is with the nuclear magnetic moment only, the deflection is very small,
see [FRI33]. The polarization will depend on the degree of selectivity of one of the
nine hyperfine states against different background. For the measurement of the po-
larization of the molecules the Lambshift polarimeter developed recently is an ideal
instrument, see [ENG03].
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19.7.5 Preservation of Polarization on Injection

The preservation of the fuel polarization either during the transport of the polar-
ized particles to the reactor, during injection and in the plasma collisions has been
discussed already quite early. Kulsrud [KUL82] concluded from quite general con-
siderations that depolarization would not be a problem in magnetic-confinement
fusion, and More [MOR83] came to similar conclusions for the case of inertial con-
finement. The authors of Refs. [DID11, DID11a] recently proposed an experiment
to investigate this question in a polarized HD molecular target where the idea of
observing the γ ’s from the reaction 2H+ 1H→ 3He+ γ was discarded in favor of
the D +D reaction neutrons because of their much higher cross section.

19.8 Future of Polarized Fusion

Due to the slow, but visible progress in the physics and technologies of fusion en-
ergy, it is appropriate to focus again on the old ideas of using polarized fuel in MCF
as well as ICF devices and the advantages this could offer. For the five-nucleon
reactions we have quantitative results at hand, but for the D+D reactions the com-
plicated reaction mechanism requires renewed and increased theoretical and exper-
imental efforts to decide on reaction-rate suppression or enhancement, or effects on
emission directions. The questions of production of high-density highly polarized
beams and targets, of polarization preservation on injection and ignition, and others
are largely unanswered and open interesting fields of research in the future.

19.9 Transmutation of Nuclear Waste

Producing energy with nuclear reactors based on fission inevitably produces nuclear
waste in the form of medium-mass fission products and trans-uranium nuclei. Many
are highly radioactive and long-lived, many also toxic, and must be isolated from
the environment for very long times. Even if all nuclear power plants could be shut
down immediately the threat will remain with us for a long time. The problem of
where and how to store the waste safely has nowhere been solved satisfactorily.

The proposition to “transmute” the nuclear waste into more short-lived and less
toxic species using methods developed for nuclear reactions appears attractive. It
was mainly promoted by Nobel-prize winner Carlo Rubbia at CERN, cf. [RUB01]
who already in 1993 proposed the scheme of a subcritical reactor as energy am-
plifier. The necessary components for ADS (Accelerator Driven Systems) are a
medium-energy (≈1 GeV high-current (typically 30 mA) accelerator (LINAC)
whose intense proton beam could spallate transuranium nuclei into smaller debris,
transmute existing fission fragments into shorter-lived species, and at the same time
the remaining “spallation neutrons” (a total of about 30 neutrons per proton) could
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Fig. 19.6 Radiotoxicity of
transuranium elements as
functions of time with and
without transmutation using
fast neutrons from a
spallation facility combined
with a subcritical reactor
(ADS system). Also shown is
the level of natural uranium
ores that is taken as measure
for comparison, see
e.g. [RUB01]

drive a subcritical breeder reactor. The reactor appears necessary, also for economi-
cal reasons, because the spallation neutrons alone would not suffice, but the subcrit-
ical (k = 0.98) reactor would act as an anergy amplifier that could produce energy
for the LINAC etc. by fission, entirely controlled by the LINAC beam. Up to 99 %
of transuranium isotopes would be removed by fission and up to 95 % of long-lived
fission products such as 129I, 99Tc etc. could be “transmuted” by resonant capture
of fast neutrons (TARC process) into shorter-lived species. The reactor would be of
an “inherently safe” design with cooling by convection only. Figure 19.6 shows the
predicted effect of transmutation on the radiotoxicity over time of spent nuclear fuel
with and without transmutation.

A comprehensive text on ADS is a DOE “White Paper” [ABD10]. Two European
projects have been started to build a demonstrator ADS, GUINEVERE [GUI12]
and MYRRHA [MYR12] including a fast-neutron reactor at Mol, Belgium. At the
same time a high-intensity LINAC is being developed. Even after countries such as
Germany decided to phase out nuclear energy production, the enormous reduction
of the mass and activities of the remaining highly active waste by transmutation may
alleviate the answers to the unsolved questions of final storage of radioactive waste.

19.10 Exercises

19.1 Design a spin-correlation experiment of the aneutronic fusion reaction
3 �He( �d,p)4He with a strong resonant cross section of σtot = 800 mb at
Elab(d) = 430 keV. Assume that by optical pumping a target density cor-
responding to 1 bar at room temperature of 50 % polarized 3He gas has been
achieved and a polarized deuteron beam of 50 µA from an ABS source can be
focused into the gas cell.



References 341

Table 19.1 Cross sections of
the spin-correlation cross
section experiment of the
�2H( �d,n)3He reaction at three

incident energies

Ein (keV) σint (b)

10 8.4 · 10−6

50 4.4 · 10−3

100 1.5 · 10−2

(a) What is the total proton rate?
(b) What is the rate into a solid-state detector of 1 cm2 area at 20 cm distance

from the target center (disregard any φ dependence of σ )? Is it necessary
to take into account an anisotropy of the proton emission?

(c) How long is the measurement time for an absolute precision of 0.05 of
Ay(θ)(d) (target unpolarized), Ay(

3He) (beam unpolarized), and of the
spin-correlation coefficient Cy,y(θ) (both polarized)?

19.2 Evaluate the parameters of the D+d spin-correlation experiment of Sect. 19.5.
For simplicity assume that the overlap target region is a cube with 1 cm side
lengths, see also Fig. 19.5.

(a) Assume a deuteron current from the polarized-ion beam source of 20 µA.
What is the equivalent ṅin?

(b) The intensity of the D atomic beam is 5 · 1016 s−1 at a temperature of
T = 100 K. What is the equivalent average beam velocity 〈v〉?

(c) Calculate L and t .
(d) With the cross-section data of Table 19.1 calculate the reaction rates for

three energies of the d beam.
(e) To measure angular distributions of the polarization observables with e.g.

100 detectors each covering �Ω = 4π/100 the time T5 % is necessary
to reach a statistical uncertainty of N , the number of registered counts,
�N/N of 5 %. For polarization observables to reach sufficient accuracy
with different polarization setups an additional factor of four is expected.
These times are pure experiment running times. Calculate the 5 % error
time T5 % in s for one detector and the realistic measurement time T5 % · 4
in d .
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Chapter 20
Other Important Applications
of Nuclear-Reaction Techniques

20.1 Archaeology, Geology, and Art

The determination of the age of archaeological and geological samples as well as
of works of art has developed substantially in recent years. Older methods using
e.g. mass spectrometry to determine 14C/12C ratios have been superseded by the
use of accelerators, partly in dedicated facilities. Tandem Van-de-Graaff machines
are especially suited because of their extremely high sensitivity and low background
contamination allowing the age measurements on carbon samples back to <100000
years corresponding to such ratios on the order of 1 in 1015. One decisive advantage
is the very small amount of material (≈mg quantities) required, which keeps the
destruction of the samples to a minimum.

20.1.1 Archaeology and Age Determination

The required installations are similar to nuclear tandem VdG labs, except that
medium energies normally suffice, but high beam currents are desirable. Especially
very good mass separation and quantitative detection of the carbon ions are neces-
sary. Other mass-14 specimens are 14N, which, however does not form a negative
ion, and CH2, which is dissociated in the stripping process. High mass and energy
resolution are obtained already after the sputter ion source before injection into the
tandem as well as after acceleration by electrostatic and magnetic fields. Detection
systems use ion-mass and energy analysis by time-of-flight and �E–E telescopes.
It is necessary to know the transmission through the entire system for all relevant
nuclides.

A problem is that the natural 14C of the atmosphere has never been constant,
especially during the period of nuclear-bomb testing (the reference year BP = 0 is
defined as the year 1950 AD). Therefore, the relation between the 14C/12C ratio and
the time when the carbon intake stopped has to be calibrated by other means. These
are e.g. tree-ring dating (e.g. the German oak and pine chronologies) [SPU98], back
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Fig. 20.1 14C age determination of a piece of coptic fabric. The measured carbon age is 1568±45
years. After calibration with the calibration function shown time intervals of from 434 to 535 AD
with 1σ C.L. and from 411 to 599 AD with 2σ C.L. for the manufacturing of the fabric result.
Courtesy Deutsches Textilmuseum (DTM) Krefeld, inv. no. 12479. Photograph ©Dieter Gasse
(DTM). The dating was done at the Erlangen 14C AMS laboratory [APS13]. See also Ref. [APS07]

to ≈12 ky BP), U-Th dating of corals (back to ≈24 ky BP), and marine varves
(back to ≈ 52.8 ky BP), see Refs. [INT98, INT04, INT09, RAM12] and references
therein. An example is shown in Fig. 20.1. Depending on the shape of the calibration
function unique age assignments cannot always be made but e.g. two probable as-
signments with their probabilities instead. The very high prices of older and younger
pieces of art have incited large-scale forgeries especially of paintings. The truly high
skills of art forgers make the certification of art works based only on stylistic crite-
ria quite uncertain and error-prone (and increasingly so with increasing age of the
objects). Thus, objective methods are often necessary such as the determination of
the age of the canvas or wooden panels or of the composition of the dyes and paints
used. In a number of cases the chemical composition can be determined by physi-
cal methods such as PIXE (= proton-induced x-ray emission), in others Rutherford
backscattering (RBS) or neutron-activation analysis are required.

20.2 Materials Analysis and Modification

A number of methods using either protons or neutrons have been developed for the
use of elemental analysis of samples in technical fields as well as archaeology and
history of art. Among the few most important methods are

• RBS: Rutherford backscattering,
• PIXE: proton induced X ray analysis,
• NAA: neutron activation analysis,
• Neutron radiography, and
• PGAA: prompt γ activation analysis.
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Fig. 20.2 Schematic RBS
spectrum of α’s on a bulk
material with intermediate
mass number (continuum)
and a thin surface layer of a
metal oxide (i.e. with a
smaller and a larger mass
number resulting in two
peaks)

Whereas the first two scan the surface of objects because of the small ranges in
matter the others can be used to get information on the bulk of the samples. The five
methods will be addressed briefly here.

20.2.1 RBS

The method of surface analysis is based on Rutherford scattering e.g. with α’s, see
Sect. 2.2 but normally on a thick substrate with some surface structure or layer such
that only backscattering can occur. The substrate, due to continuous energy loss
produces a continuum up to the maximum lab energy of backscattered projectiles
and, in addition one or more peaks from the thin surface layer. From kinematics
the Z of the element, the layer thickness and some surface-structure information
such as roughness can be deduced. Typical energies are several hundred keV and
varying backscattering angles are used. Figure 20.2 shows schematically the shape
of an RBS spectrum of α’s backscattered at a typical angle from a bulk material
(continuum) and a thin surface layer of a metal oxide (two peaks).

20.2.2 PIXE

Protons impinging on material surfaces undergo not only nuclear and Rutherford
scattering but can excite inner atomic shells causing the emission of characteristic
X rays. These are specific for each element and can therefore be used to identify
the elemental composition of samples. These could be e.g. a small sample of pig-
ment from a painting identifying a forgery by a pigment that was not used before a
certain period. Since antiquity the white pigment white lead (2PbCO3 · Pb(OH)2 =
C2H2O8Pb3) was used by artists, whereas zinc-white (ZnO) was only introduced
around 1840, and titanium-white (TiO2) around 1918. Another example would be
dust from a filter, through which air has been blown and deposited material from
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Fig. 20.3 A PIXE and a
PGAA spectrum of the same
piece of glass. The
background in the PIXE
spectrum are bremsstrahlung
X rays. Courtesy of
P. Kudějová [KUD05]

the environment, e.g. along highways to check on the vehicles’ exhaust (Pb, soot
etc.). Figure 20.3 shows a PIXE and a PGAA spectrum of the same piece of green
glass [KUD05] and illustrates the different and partly complementary information
provided by both methods.

20.2.3 Neutron Radiography

Cold to thermal neutron beams from nuclear reactors are used for radiography, al-
ready on an industrial scale. The scattering and absorption properties of the neutrons
are different and often complementary to X-rays, which interact most strongly with
high-Z material. Neutrons interact most strongly with hydrogen, i.e. also with com-
pounds containing hydrogen (organic liquids in metal containers, biological ma-
terial, explosives etc.). Analog as well as digital methods of image formation are
being used. Figure 20.4 shows—in contrast to X-ray absorption and in part also
complementary for different elements—the “un-systematic” response of different
materials (elements, isotopes) to thermal neutron irradiation and a biological exam-
ple (it could have been a technical device where cracks in the material would show
up, or a hidden explosive device).
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Fig. 20.4 The response to thermal neutrons of elements (isotopes) along the periodic table, ex-
pressed as mass attenuation coefficient (left, and a biological example of a radiography (right).
From [CEA13]. The symbols are: Scattering + absorption (full circles), mainly scattering
(squares), mainly absorption (triangles), absorption only (circles). The dashed line is the mass
attenuation coefficient of 125 keV X-rays. After [PNR92]

20.2.4 Materials Modifications

Only a few short remarks can be devoted to these applications of accelerators and
nuclear methods despite partly widespread use.

• Ion implantation is used to dope pure Si wafers with foreign atoms like boron,
phosphorus, and arsenic with concentrations from 1010 to 1015 atoms/cm2 to
produce n- or p-type semiconductor materials. The energy of the beams from
high-current accelerators determines the depth of implantation. Applications are,
among others, semiconductor detectors as well as complex integrated circuits.

• Surface treatments of medical implants, ball bearings and machining tools by im-
planting nitrogen, boron, carbon titanium etc. ions with high-current, low-voltage
accelerators in order to improve the mechanical properties and reduce wear.

• In view of terrorism and for contraband and drug detection accelerator-based
pulsed-neutron radiographic systems (PFNA) and methods are being developed
that could allow to scan entire trucks by (n,γ ) for certain materials (e.g. is a high
carbon to oxygen ratio characteristic for drugs, high nitrogen content for explo-
sives etc.) The fusion neutrons are produced by a deuteron beam from a low-
energy accelerator and the γ ’s are detected by large arrays of suitable detectors,
thus creating large-area or even tomographic images.

20.3 Exercises

20.1. Remnants of a wooden boat were found in the mud of the Baltic Sea. A small
piece of a plank was prepared and inserted into the target pill of the sputter
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source of an AMS accelerator. A ratio of N(14C)/N(12C) of 1.221 · 10−12

was measured. When was the tree cut down, which served to make the plank?
Assume an original ratio at that time—as confirmed by tree-ring calibration—
of 1.5 ·10−12 and T1/2(

14C)= 5730±40 a, as well as the simple radioactive-
decay law. Which age error results from the error of the halflife of 14C alone?

20.2. Older methods used mass spectrometers to determine mass ratios of nuclei
decaying into daughter nuclei. In a rock sample of 10 g with a uranium content
of 4 ppm a 4He quantity of 5 · 10−3 cm3 was measured. How long ago did the
rock solidify?

20.3. Another method for radioactive materials is measuring the activity per mass
unit (“specific activity”) of an old sample vs. that of a recent one. As an ex-
ample take a wooden beam from an old settlement. You measure an activity
of 14C of 1.7 decays/s whereas the activity in a recent sample is 2.5/s. How
old is the old wooden beam (assuming it was cut directly from a freshly felled
tree)?

20.4. With your knowledge of Rutherford scattering (see Sect. 2.2), construct qual-
itatively (and possibly quantitatively) an RBS spectrum of 5.5 MeV α’s (such
as from an 241Am source), backscattered under θ = 170◦ from a thin Al foil
(“thin” is to mean that the energy loss in the foil is small relative to the in-
cident energy). Assume, in addition, that the Al has a thin oxide layer on its
surface and, also, some carbon buildup from cracking of the residual oil va-
por by the beam which continues to grow with time (see e.g. the spectra of
Fig. 17.4). How does the spectrum change with time? With increasing levels
of sophistication, use kinematics and energy-loss calculations (Bethe-Bloch)
and/or suitable tabulations, graphs, internet etc. Because there is no perfect
vacuum (evaluate the approximate number density of residual-gas molecules
at a “vacuum” pressure of 1 · 10−6 mbar): which measures could you try to
reduce carbon buildup?
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Chapter 21
Trends and Future Developments of Nuclear
Reactions

At least two dominant trends can be observed in nuclear-reaction physics:

• Studies of “exotic nuclei”
• Studies of low-cross section reactions.

Technological advances can be expected in the field of accelerators, but not very
quickly: One is the wakefield acceleration of ions and energetic beams directly from
the interaction of high-power lasers with the atoms in target foils, which might also
produce polarized ions (“tilted-foil” method).

Theoretical work on nuclear structure and nuclear reactions that increasingly re-
lies on the use of very large computing resources has made enormous progress in
recent years and will continue to do so.

21.1 Exotic Nuclei

All nuclei far from the line of stability could be named “exotic”. These encompass
nuclei at the lifetime limits along the proton and neutron driplines and halo nuclei
as well as superheavies on the way to a new island of stability beyond element 118.
The short-lived β+ and β− unstable nuclei which can be classified by their varying
isospin quantum number T =−1/2(N −Z) are of interest for many reasons:

• It is interesting to follow the development of the shell-model energy gaps with
varying neutron or proton numbers.

• The structure of these nuclei and their function in nuclear reactions may serve as
tests of advanced theoretical approaches such as no-core shell model and similar
ab initio calculations.

• The contributions of these nuclei as intermediate steps in the different chains of
nucleosynthesis must be known.

The challenge is of course to devise accelerators for beams, with which these nuclei
may be produced either as compound or as final nuclei, which also means accelera-
tors for radioactive beams. A number of such facilities is already working or in the
planning stage, see Chap. 15.
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Fig. 21.1 Characteristic background γ spectra taken at a surface laboratory, with the main con-
tributions from different sources, and at two different underground laboratories, using the same
detector, the Boulby mine (UK) and LUNA/LNGS (Gran Sasso, Italy) showing background sup-
pression by up to three orders of magnitude, see [ALI12]

21.2 Low-Cross Section Reactions

In order to study nuclear reactions (e.g. relevant to nucleosynthesis), which, due to
the Coulomb barrier may have very small cross sections, two developments are es-
sential: Good statistics in reasonable measurement times require beam intensities as
high as possible, for which suitable accelerators and ion sources have to be provided.

With the expected small count rates in the presence of background from terres-
trial and cosmic-ray sources (consisting mainly of muons) radiation shielding is
necessary. This is best achieved by going underground. The number of already ex-
isting underground facilities complete with accelerators etc. such as LUNA at the
Gran Sasso, Italy, will certainly increase [BRO10]. Figure 21.1 shows the dramatic
effect of shielding on the background in environmental γ spectra. Similar effects are
expected for charged-particle spectra from solid-state detectors. An example show-
ing surface-laboratory background compared to an anti-coincidence spectrum that
simulates the LUNA underground situation is given by Fig. 21.2. The facility for the
PANDAX experiment in China has the so far lowest muon background and will be
used for the search of Weakly Interacting Massive Particles (WIMPs), the particles
connected to the Cold Dark Matter constituting ≈22 % of the mass of the universe,
using nuclear reaction methods—elastic scattering recoils imparted to nuclei such
as Xenon.

21.3 Accelerator Developments

The sheer size of highest-energy accelerators such as the LHC at Geneva, SLAC at
Stanford, or DESY at Hamburg indicates a limit for future accelerators with even
higher energies. But the possible reduction of the size of smaller accelerators could
have an enormous impact on accelerator applications, e.g. for particle-therapy instal-
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Fig. 21.2 Comparison of
background in the upper Si
solid-state detector of a stack
of two 0.3 mm detectors
taken at a surface laboratory
in coincidence, with
background from a
simulation of the LUNA
deep-underground situation
with the two detectors in
anti-coincidence [ALI11]

lations in hospitals. The limitation is mainly connected with the strength of electric
accelerating fields that can be maintained across a gap of given length. Thus, strong
research efforts are seeking alternative ways of achieving higher acceleration val-
ues. The idea of plasma acceleration was first published in 1979 ([TAJ79]) and first
acceleration was observed in 1988 ([ROS88]). One concept is that of wakefield ac-
celeration by a plasma “wave” produced with laser or charged-particle beams. Fem-
tosecond TW titanium-sapphire lasers have been applied, as well as high-energy
high-current beams at facilities such as SLAC (Stanford) and BNL (Brookhaven).
Acceleration has been achieved with field gradients several orders of magnitude
higher than in existing accelerators. For a recent survey see Ref. [JOS12] and refer-
ences therein.

21.4 Theoretical Progress

Recently large collaborations of theorists have been formed in order to tackle a
number of unsolved problems using large computers. Three regions of the nuclear
chart can be defined, in which different goals and methods have been proposed. In
the region of light nuclei no-core shell model calculations using the NN interaction
or EFT as input have been quite successful. A brief survey on these projects was
recently published in Nucl. Phys. News [FUR11].
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Chapter 22
Appendices

22.1 Appendix A—Tables of Useful Numbers and Relations

All numerical values are taken from the CODATA(NIST) compilation as published
in Nuclear Wallet Card [NWC11] and [RMP12]. All masses are rest masses.

Table 22.1 Fundamental constants

Vacuum velocity of light c 2.99792458 · 108 ms−1

Elementary charge e 1.602176565 · 10−19 C

Planck constant h 6.62606957 · 10−34 J s

Reduced Planck constant �= h/2π 1.054571726 · 10−34 J s

Fine structure constant α = e2

�c
7.2973525698 · 10−3

Avogadro constant NA 6.02214129 · 1023 mol−1

Bohr magneton μB = e�
2me

9.27400968 · 10−24 J T−1

Electron magnetic moment μe −1.00115965218076 µB

Atomic mass unit u 1.660538921 · 10−27 kg

uc2 931.494013 MeV

Mass of H atom mH 1.00782503207 u

Proton mass mp 1.007276466812 u

Neutron mass mn 1.00866491600 u

Deuteron mass md 2.013553212 u

Electron mass me 5.4857990946 · 10−4 u

Bohr radius a0 = �
2/mee

2 5.2917721092 · 10−11 m

Nuclear magneton μN 5.05078353 · 10−27 J T−1

Proton gyromagnetic ratio γI = μI

�I
2.675222005 · 108 s−1 T−1

g-factor neutron −3.82608545

g-factor proton 5.585694713
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Table 22.1 (Continued)

g-factor deuteron 0.8574382308

g-factor electron −2.00231930436153

Boltzmann constant k 1.3806488 · 10−23 J K−1

Farady constant F =NAe 9.64853365 · 104 C mol−1

Table 22.2 Useful relations and ratios

Energy/Frequency E = hν 1 MeV=̂2.418 · 1020 Hz

Energy/Wavelength Eλ= hc 1.2398 · 10−10 MeV cm

Eλ̄= �c 197.326990 MeV fm

Energy/Velocity

non-relativistic v = 1.3889
√

E(MeV)/m(u) · 107 m/s

Energy/Momentum p = 1
c

√
2m0c2E +E2

non-relativistic
E
m0c

2
≈√2m0E

= 43.162
√

m0(u)E(MeV) MeV/c

highly relativistic
E�m0c

2
≈E/c

De Broglie Wavelength λ̄= �/p = �√
2m0E+E2/c2

non-relativistic ≈ �√
2m0E

= 4.572√
m0E

fm

relativistic ≈ �c
E
= 197.327

E
fm

Sommerfeld Parameter ηS = Z1Z2e
2/�v

= 0.1575Z1Z2[μ(u)/Ec.m.(MeV)]1/2

Coulomb Barrier EC = Z1Z2e
2/RC

Coulomb Radius
[BAS80]

RC ≈ [1.12(A
1/3
1 +A

1/3
2 )

−0.94(A
−1/3
1 +A

−1/3
2 )+ 3]

fm

22.2 Appendix B—Practical Units

In practical work in nuclear and atomic physics a set of units is costumarily used
that is adapted to the size and energies of atoms and nuclei. The following table lists
a few of them.

Table 22.3 List of a few “practical” units of nuclear physics

Energy 1 eV 1.602176565 · 10−19 J

Energy/Temperature 1 eV 1.1604519 · 104 K

Length 1 fm 1 · 10−15 m

1 Å 1 · 10−10 m

Cross Section 1 b 1 · 10−28 m2
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22.3 Appendix C—Angular-Momentum Recoupling Coefficients

The coefficients used in the text are briefly defined here. The tedious summation
over magnetic quantum numbers has been enormously alleviated by introducing
these coefficients, which have a number of symmetry properties and rules and exist
as tables or can simply be calculated in appropriate subroutines. Especially the alge-
bra introduced by Racah (Racah algebra [RAC42]) has proved very useful. Further
details can be found in the literature [BRI71, EDM60, SAT90, BLA52] and refer-
ences therein. Caveat: Many different definitions, notations, and symbols have been
published in the literature; we follow Ref. [BRI71].

22.3.1 Coupling of Two Angular Momenta

THe coupling of two angular momenta a ≡ j1, α ≡m1 and b ≡ j2, β ≡m2 to c ≡
J,γ ≡M is described by Clebsch-Gordan or Wigner coefficients or 3-j symbols.
They are defined by the linear transformation from the uncoupled to the coupled
system

|JM〉 =
∑
m1m2

|j1j2m1m2〉〈j1j2m1m2|JM〉 (22.1)

or in abbreviated form

|abcγ 〉 =
∑
αβ

|abαβ〉〈abαβ|cγ 〉 (22.2)

Wigner’s 3j symbol is related by

〈abαβ|c− γ 〉 = (−)a−b−γ (2c+ 1)1/2
(

a b c

α β γ

)
. (22.3)

22.3.2 Coupling of Three Angular Momenta

The different ways of coupling three angular momenta a, b, and c to d, e, and f

with respective magnetic quantum numbers α,β, γ, δ, ε, and φ are connected by a
linear transformation mediated by Racah coefficients W or 6-j symbols

〈abαβ|cγ 〉〈edα+ β,γ − α− β|cγ 〉
=
∑
f

〈bdβ,γ − α − β|f γ − α〉〈af α,γ − α|cγ 〉

× [(2e+ 1)(2f + 1)
]1/2

W(abcd; ef ). (22.4)
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W is related to the 6-j symbol

{
a b e

d c f

}
= (−)a+b+c+dW(abcd; ef ). (22.5)

Both coefficients can be expressed in terms of CG coefficients or 3-j symbols.
The coefficient Z (used e.g. in the Hauser-Feshbach cross section) is related to

W(abcd; ef ) by [BLA52]

Z(abcd; ef )= if−a+c
[
(2a + 1)(2b+ 1)(2c+ 1)(2d + 1)

]1/2

× 〈ac00|f 0〉W(abcd; ef ). (22.6)

22.3.3 Coupling of Four Angular Momenta

A case, which occurs in nuclear reactions is that of (re-)coupling of four angular
momenta including all summations over magnetic quantum numbers and important
especially for the case of polarization observables. The coefficients, which are de-
fined in analogy to the 6-j case are the X coefficients (Fano) or 9-j symbols

X(abc, def,ghi)≡
⎧⎨
⎩

a b c

d e f

g h i

⎫⎬
⎭ . (22.7)

They can be contracted out of six 3-j symbols after summing over all (minus one)
magnetic quantum numbers. Welton’s general formula (7.1) contains four 9-j sym-
bols.

22.3.4 Spherical Harmonics

The spherical harmonics are the angular-momentum eigenfunctions and solutions
of the angular part of the Schrödinger equation. They are defined as

Y�m =
(

2�+ 1

4π

)1/2

(22.8)

× (−)m
[
(�−m)!
(�+m)!

]1/2

P m
� (θ)eimφ. (22.9)

The P m
� are the Associated Legendre Functions, for m= 0 the Legendre Polynomi-

als P�(cos θ).
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22.4 Appendix D—General Resources

In this appendix a selection of references with resource material is collected. They
concern:

• Recommended General Texts on Nuclear Reactions Refs. [BAS80, MAR70,
SAT90],

• Angular Momentum Refs. [BLA52, BRI71, EDM60, RAC42], and
• Data Resources Refs. [ELL, GWU11, KNC, LED, NWC11, NCR, NDT, NDS,

NNO13, NUD, RMP12, RPP08, AMS08, BER12, SAID13].
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Occupation Numbers, 278
Region of the HFS, 276
Transitions Between States, 279


	Nuclear Reactions
	Preface
	Historical Remark
	Observables
	About This Book
	Acknowledgments
	References

	About the Author
	Contents

	Part I: Nuclear Reactions
	Chapter 1: Introduction: Role of Nuclear Reactions in Nuclear and Particle Physics
	1.1 Nuclear Reactions in Nuclear Spectroscopy
	1.2 Extension of Nuclei
	1.3 Typical Energies
	1.3.1 Binding Energies of Nuclei
	1.3.2 Coulomb Barrier
	1.3.3 "Optical" Argument

	1.4 Nuclear Reaction Models
	1.4.1 Hierarchy of Excitations

	1.5 Exercises
	References

	Chapter 2: Classical Cross Section
	2.1 Deﬂection Function
	2.2 Rutherford Scattering
	2.2.1 Rutherford Scattering Cross Section
	2.2.2 Minimal Scattering Distance d
	2.2.3 Trajectories in the Point-Charge Coulomb Field
	2.2.4 Consequences
	2.2.5 Consequences of the Rutherford Experiments and Their Historic Signiﬁcance
	2.2.6 Quantum-Mechanical Derivation of Rutherford's Formula
	2.2.7 Deviations from the Rutherford Formula

	2.3 Scattering, Density Distributions, and Nuclear Radii
	2.3.1 Nuclear Radii from Deviations from Rutherford Scattering
	2.3.2 Coulomb Scattering from an Extended Charge Distribution
	2.3.3 Ansatz for Models
	2.3.4 Expansion into Moments
	2.3.5 Results of Hadron Scattering

	2.4 Electron Scattering
	2.4.1 Matter-Density Distributions and Radii
	2.4.2 Special Cases-Neutron Skins and Halo Nuclei

	2.5 Exercises
	References

	Chapter 3: Role of Conservation Laws and Symmetries in Nuclear Reactions
	3.1 Generalities
	3.1.1 Discrete Transformations
	3.1.2 Continuous Transformations

	3.2 Conserved Quantities in Nuclear Reactions
	3.2.1 Energy Conservation
	3.2.2 Momentum Conservation
	3.2.3 Reaction Kinematics
	3.2.4 Conservation of Angular Momentum
	3.2.5 Conservation of Parity
	3.2.6 Nuclear Reactions Under Parity Conservation
	3.2.7 Nuclear Reactions Under Parity Violation

	3.3 Isospin in Nuclear Reactions
	3.3.1 Formalism
	3.3.2 Isospin as Conserved Quantity
	3.3.3 Isospin Breaking

	3.4 Exchange Symmetry in Nuclear Reactions of Identical Particles
	3.4.1 Identical Bosons with Spin I=0
	3.4.2 Identical Fermions with Spin I=1/2

	3.5 Time-Reversal Invariance
	3.5.1 Time Reversal, Reciprocity, and Detailed Balance
	3.5.2 Other Nuclear Observables of Possible Time Reversal Violation TRV

	3.6 Exercises
	References

	Chapter 4: Cross Sections
	4.1 General Appearance of Cross Sections
	4.1.1 Neutral Particles-Elastic Scattering (n,n)
	4.1.2 Neutral Particles-Inelastic Neutron Scattering
	4.1.3 Neutral Particles-Exothermic Reactions with Thermal Neutrons (n,gamma), (n,p), (n,f) etc.
	4.1.4 Neutral Incident Particles-Endothermic Reactions (Q < 0) with Charged Exit Channel
	4.1.5 Charged Particles in the Entrance and Exit Channels
	4.1.6 Threshold Effects
	4.1.7 Other Phenomena

	4.2 Formal Description of Nuclear Reactions
	4.2.1 Wave Function and Scattering Amplitude
	4.2.2 Scattering Amplitude and Cross Section
	4.2.3 Schrödinger Equation
	4.2.4 The Optical Theorem

	4.3 Remark and Exercise
	References

	Chapter 5: Polarization in Nuclear Reactions-Formalism
	5.1 Polarization Formalism
	5.2 Expectation Value and Average of Observables in Measurements
	5.3 Density Operator, Density Matrix
	5.3.1 General Properties of rho
	5.3.2 Density Matrix of the General Mixed State
	5.3.3 Examples for Density Matrices
	5.3.4 Complete Description of Spin Systems
	5.3.5 Expansions of the Density Matrix, Spin Tensor Moments

	5.4 Rotations, Angular Dependence of the Tensor Moments
	5.4.1 Generalities
	5.4.2 The Description of Rotations by Rotation Operators
	5.4.3 Rotation of the Density Matrix and of the Tensor Moments
	5.4.4 Practical Realization of Rotations
	5.4.5 Coordinate Systems

	5.5 Exercises
	References

	Chapter 6: Nuclear Reactions of Particles with Spin
	6.1 General
	6.2 The M Matrix
	6.3 Types of Polarization Observables
	6.4 Coordinate Systems
	6.4.1 Coordinate Systems for Analyzing Powers
	6.4.2 Coordinate Systems for Polarization Transfer
	6.4.3 Coordinate Systems for Spin Correlations

	6.5 Structure of the M Matrix and Number of "Necessary" Experiments
	6.6 Examples
	6.6.1 Systems with Spin Structure 1/2+0->1/2 + 0
	6.6.2 Systems with Spin Structure 1/2 + 1/2->1/2 + 1/2
	6.6.3 Systems with Spin Structure 1/2 + 1 and Three-Nucleon Studies
	6.6.4 Systems with Spin Structure 1 + 1 and 1/2 + 1/2 and the Four-Nucleon Systems
	6.6.5 Practical Criteria for the Choice of Observables

	6.7 Exercises
	References

	Chapter 7: Partial Wave Expansion
	7.1 Neutral Particles
	7.2 Charged Particles
	7.3 Exercises
	References

	Chapter 8: Unpolarized Cross Sections
	8.1 General Features
	8.2 Inelasticity and Absorption
	8.3 Low-Energy Behavior of the Scattering
	8.3.1 Scattering Length a
	8.3.2 Analytically Solvable Models for the Low-Energy Behavior

	8.4 Exercises
	References

	Chapter 9: The Nucleon-Nucleon Interaction
	9.1 The Observables of the NN Systems
	9.1.1 NN Observables
	9.1.2 NN Scattering Phases
	9.1.3 NN Interaction as Exchange Force

	9.2 Few-Nucleon Systems
	9.2.1 The Two-Nucleon System
	9.2.2 The Three-Nucleon System
	9.2.3 Elastic Scattering in the Three-Nucleon System
	9.2.4 Kinematics of Three-Nucleon Breakup Reactions
	9.2.5 Results for the Three-Nucleon Breakup Reaction
	9.2.6 Recent Progress in Few-Nucleon Reactions
	9.2.7 Other Few-Nucleon Systems

	9.3 Exercises
	References

	Chapter 10: Models of Reactions-Direct Reactions
	10.1 Generalities
	10.2 Elastic Scattering
	10.3 Optical Model
	10.4 Direct (Rearrangement) Reactions
	10.5 Stripping Reactions
	10.6 T Matrix and Born Series
	10.6.1 Integral Equations

	10.7 Born Approximation
	10.7.1 First Born Approximation = PWBA = Plane Wave Born Approximation
	10.7.2 Distorted Wave Born Approximation = DWBA

	10.8 Details of the Born Approximations
	10.9 Exercises
	References

	Chapter 11: Models of Reactions-Compound-Nucleus (CN) Reactions
	11.1 Generalities
	11.2 Theoretical Shape of the Cross Sections
	11.3 Derivation of the Partial-Width Amplitude for Nuclei (s Waves Only)
	11.4 Role of Level Densities
	11.4.1 Induced Nuclear Fission

	11.5 Single Resonances
	11.5.1 General Features
	11.5.2 Alternative Description of Resonances
	11.5.3 Overlapping Resonances
	11.5.4 Ericson Fluctuations
	11.5.5 Analysis of Ericson Fluctuations
	11.5.6 Results for Level Widths

	11.6 Complete Averaging over the CN States
	11.6.1 Generalities
	11.6.2 Hauser-Feshbach Formalism

	11.7 Exercises
	References

	Chapter 12: Intermediate Structures
	12.1 Heavy-Ion Scattering and Molecular Resonances
	12.2 Structures in Neutron Reactions
	12.2.1 Neutron-Nucleus IS
	12.2.2 Single-Particle Neutron Resonances

	12.3 Giant Resonancesf1[1]
	12.4 Fission Doorways
	12.5 Isobaric Analog Resonances (IAR)
	12.6 Exercises
	References

	Chapter 13: Heavy-Ion (HI) Reactions
	13.1 General Characteristics of HI Interactions
	13.2 Semi-Classical Phenomena and Description
	13.2.1 Elastic Scattering
	13.2.2 Other HI Reaction Models
	13.2.3 Molecular Resonances
	13.2.4 Heavy-Ion Reactions and Superheavies SH

	13.3 Nuclear Spectroscopy and Nuclear Reactions
	13.4 Heavy-Ion Reactions as Special Tools for Nuclear Spectroscopy
	13.4.1 Coulomb Excitation
	13.4.2 Fusion-Evaporation Reactions

	13.5 Exercises
	References

	Chapter 14: Nuclear Astrophysics
	14.1 Reaction Rates
	14.2 Typical S-Factor Behavior
	14.2.1 Calculation of Reaction Rates in Plasmas

	14.3 Exercises
	References

	Chapter 15: Spectroscopy at the Driplines, Exotic Nuclei, and Radioactive Ion Beams (RIB)
	15.1 Use of RIB
	15.1.1 Nuclear Radii and Neutron vs. Proton Distributions
	15.1.2 Nuclear Models for Exotic Nuclei
	15.1.3 Giant Resonances of Exotic Nuclei

	15.2 Production of Radioactive-Ion Beams
	15.2.1 The ISOL Principle
	15.2.2 IFF and Post-Accelerating Schemes

	15.3 Nuclear Reactions and the Way to Superheavies
	References


	Part II: Tools of Nuclear Reactions
	Chapter 16: Accelerators
	16.1 Electrostatic Accelerators
	16.1.1 The Cockroft-Walton Accelerator
	16.1.2 The Van-de-Graaff (VdG) Accelerator

	16.2 RF Accelerators
	16.2.1 The Linear Accelerator (LINAC)
	16.2.2 The Cyclotron
	16.2.3 Betatron and Synchrotron

	16.3 Beam Forming and Guiding Elements
	16.3.1 Electrostatic Lenses
	16.3.2 Magnetic Lenses
	16.3.3 Strong Focusing

	16.4 Ion Sources
	16.4.1 Unpolarized Beams
	16.4.2 Polarized Beams and Targets

	16.5 Physics and Techniques of the Ground-State Atomic Beam Sources ABS
	16.5.1 Production of H and D Ground-State Atomic Beams
	16.5.2 Dissociators, Beam Formation and Accommodation
	16.5.3 State-Separation Magnets-Classical and Modern Designs
	16.5.4 RF Transitions

	16.6 Ionizers
	16.6.1 Ionizers-Electron-Bombardment and Colliding-Beams Designs
	16.6.2 Sources for Polarized 6,7Li and 23Na Beams
	16.6.3 Optically Pumped Polarized Ion Sources (OPPIS)

	16.7 Physics of the Lambshift Source LSS
	16.7.1 The Lamb Shift
	16.7.2 Level Crossings and Quench Effect
	16.7.3 Enhancement of Polarization
	16.7.4 Production and Maximization of the Beam Polarization

	16.8 Spin Rotation in Beamlines and Precession in a Wien Filter
	16.8.1 Spin Rotation in Beamlines
	16.8.2 Spin Rotation in a Wien Filter

	16.9 Exercises
	References

	Chapter 17: Detectors, Spectrometers, and Electronics
	17.1 Ionization Chambers
	17.2 Scintillation Detectors
	17.3 Solid-State Detectors
	17.3.1 Si Detectors
	17.3.2 Particle Identiﬁcation
	17.3.3 Magnetic Spectrographs
	17.3.4 Ge Detectors

	17.4 Neutrons
	17.4.1 Production of Neutrons

	17.5 Neutron Detectors
	17.5.1 Neutron-Induced Reactions
	17.5.2 Neutrons as Reaction Products
	17.5.3 Different Neutron Detection Methods Depending on Neutron Energies

	17.6 Polarized Neutrons
	17.6.1 Magnetized Materials
	17.6.2 Polarized 3He as Spin Filter

	17.7 gamma Spectroscopy
	References


	Part III: Applications of Nuclear Reactions and Special Accelerators
	Chapter 18: Medical Applications
	18.1 Particle (Hadron) Tumor Therapy
	18.2 Isotope Production
	18.3 Exercises
	References

	Chapter 19: Nuclear-Energy Applications
	19.1 Fusion-Energy Research
	19.1.1 Fusion Basics
	19.1.2 Nuclear Cross Sections

	19.2 Five-Nucleon Fusion Reactions
	19.2.1 "Polarized" Fusion

	19.3 Four-Nucleon Reactions
	19.3.1 Suppression of Unwanted DD Neutrons
	19.3.2 Possible Reaction-Rate Enhancement for the DD Reactions by Polarization?

	19.4 Other Fusion Reactions
	19.5 Present Status of "Polarized" Fusion
	19.6 New Calculations for Few-Body Systems
	19.6.1 Theoretical Approaches

	19.7 New Aspects of Polarized Fusion
	19.7.1 Effect of Electron Screening
	19.7.2 Rate Enhancement and Electron Screening
	19.7.3 Pellet Implosion Dynamics
	19.7.4 Technical Questions
	19.7.5 Preservation of Polarization on Injection

	19.8 Future of Polarized Fusion
	19.9 Transmutation of Nuclear Waste
	19.10 Exercises
	References

	Chapter 20: Other Important Applications of Nuclear-Reaction Techniques
	20.1 Archaeology, Geology, and Art
	20.1.1 Archaeology and Age Determination

	20.2 Materials Analysis and Modiﬁcation
	20.2.1 RBS
	20.2.2 PIXE
	20.2.3 Neutron Radiography
	20.2.4 Materials Modiﬁcations

	20.3 Exercises
	References

	Chapter 21: Trends and Future Developments of Nuclear Reactions
	21.1 Exotic Nuclei
	21.2 Low-Cross Section Reactions
	21.3 Accelerator Developments
	21.4 Theoretical Progress
	References


	Chapter 22: Appendices
	22.1 Appendix A-Tables of Useful Numbers and Relations
	22.2 Appendix B-Practical Units
	22.3 Appendix C-Angular-Momentum Recoupling Coefﬁcients
	22.3.1 Coupling of Two Angular Momenta
	22.3.2 Coupling of Three Angular Momenta
	22.3.3 Coupling of Four Angular Momenta
	22.3.4 Spherical Harmonics

	22.4 Appendix D-General Resources
	References

	Index

